CONTENTS

 

SCIENTIFIC ARTICLES

4     Effects and Risks of Nanotechnologies and Nanomaterials on Environment and Human Health

……Aljoša Košak1,2, Marijana Lakić1 in Aleksandra Lobnik1,2  Abstract and References

1Univerza v Mariboru, Fakulteta za strojništvo, Smetanova 17, 2000 Maribor

2IOS, d. o. o., Inšitut za okoljevarstvo in senzorje, Beloruska 7, 2000 Maribor

Scientific Review

Received 10-2014 • Accepted 02-2015

Corresponding author:

Prof. D.Sc. Aleksandra Lobnik

Tel.: +386 2 220 79 12

E-mail: lobnikaleksandra@gmail.com

 

Abstract

Development of nanomaterials and their use in the textile field is opening new opportunities for products with special functional and technological features; however, there is also expressed concern over the environmental and human health aspects of nanomaterials. This paper discusses the environmental impacts and health risks of nanomaterials commonly used in textiles, e.g. silver nanoparticles (Ag), silica nanoparticles (SiO2), titanium dioxide nanoparticles (TiO2), zinc oxide nanoparticles (ZnO), nanoparticles of aluminum oxide (Al2O3), carbon-black nanoparticles, montmorillonite and carbon nanotubes (CNT).

Keywords: nanotechnology, nanomaterials, product life cycle, silver nanoparticles, silica nanoparticles, titanium dioxide nanoparticles, zinc oxide nanoparticles, aluminum oxide nanoparticles, montmorillonite, carbon nanotubes, toxicity

 

References

  1. LOBNIK, Aleksandra, LAKIĆ, Marijana, KOŠAK, Aljoša, TUREL, Matejka, KORENT UREK, Špela, GUTMAHER, Andreja. Uvod v nanomateriale za uporabo v tekstilijah. Tekstilec, 2013, 56(2), 137–144.
  2. LAKIĆ, Marijana, KOŠAK, Aljoša, GUTMAHER, Andreja, LOBNIK, Aleksandra. Nanomateriali za uporabo v funkcionalnih tekstilijah. Tekstilec57(2), 139–152, doi: 10.14502/Tekstilec2014.57.139–152.
  3. REBERNIK, Andreja. Zakonodaja caplja za razvojem nanotehnologije, 25.8.2010 [dostopno na daljavo] [citirano 15.2.2015]. Dostopno na svetovnem spletu: <http://www.siol.net/novice/slovenija/2010/08/nanozakonodaja.aspx>.
  4. ASCHBERGER, Karin, MICHELETTI, Christian, KLÜTTGEN-SOKULL, Birgit, CHRISTENSEN, M., Frans. Analysis of currently available data for characterising the risk of engineered nanomaterials to the environment and human health – lessons learned from four case studies. Environment International, 2011, 37(6), 1143–1156, doi: 10.1016/j.envint.2011.02.005.
  5. SOM, Claudia, WICK, Peter, KRUG, Harald, NOWACK, Bernd. Environmental and health effects of nanomaterials in nanotextiles and facade coatings, Environment International, 2011, 37(6), 1131–1142, doi:10.1016/j.envint.2011.02.013.
  6. HE, Xiaojia, AKER, Winfred G., LESZCZYNSKI, Jerzy, HWANG, Huey-Min. Using a holistic approach to asses the impact of engineered nanomaterials inducing toxicity in aquatic systems. Journal of Food And Drug Analysis, 2014, 22(1), 128–146, doi: 10.1016/j.jfda.2014.01.011.
  7. HAYDON, Brian. Nanomaterials and their Applications in Textiles—Standards Domestic Standardization for Canadian Manufacturers and Importers and International Standardization Developments, 2012 [dostopno na daljavo] [citirano 15.5.2014]. Dostopno na svetovnem spletu: <http://www.ic.gc.ca/eic/site/textiles-textiles.nsf/eng/tx03232.html>.
  8. NANOfutures, European Technology Integrating and Innovation Platform on Nanotechnology, Integrated Research and Industrial Roadmap for European Nanotechnology [dostopno na daljavo] [citirano 15.2.2015]. Dostopno na svetovnem spletu: <http://www.nanofutures.info/sites/default/files/NANOfutures_Roadmap%20july%202012_0.pdf>.
  9. HEGEMANN, Dirk, HOSSAIN MOKBUL, M., BALAZS, J., Dawn. Nanostructured plasma coatings to obtain multifunctional textile surfaces. Progress in Organic Coatings, 2007, 58(2–3), 237–240, doi: 10.1016/j.porgcoat.2006.08.027.
  10. WINDLER, L., LORENZ, C., von GOETZ, N., HUNGERBÜHLER, K., AMBERG, M., HEUBERGER, M., NOWACK, B. Release of titanium dioxide from textiles during washing. Environmental Science and Technology, 2012. 46(15), 8181–8188, doi: 10.1021/es301633b.
  11. AFSHARI, A., MATSON, U., EKBERG, L. E. Characterization of indoor sources of fine and ultrafine particles: a study conducted in a full-scale chamber. Indoor Air, 2005, 15(2), 141–150, doi: 10.1111/j.1600-0668.2005.00332.x.
  12. KÖHLER, R. Andreas, SOM, Claudia. Risk preventative innovation strategies for emerging technologies the cases of nano-textiles and smart textiles. Technovation, 2013, In Press, Corrected Proof, doi:10.1016/j.technovation.2013.07.002.
  13. SOM, Claudia, BERGES, Markus, CHAUNDHRY, Qasim, DUSINSKA, Maria, FERNANDES, F. Teresa, OLSEN, Stig Irving, NOWACK, Bernd. The importance of life cycle concepts for the development of safe nanoproducts. Toxicology, 2010, 269(2–3), 160–169, doi: 10.1016/j.tox.2009.12.012.
  14. WICKSON, Fern, NIELSEN, N. Kåre, in QUIST, David. Nano and the environment: potential risks, real uncertainities & urgent issues. Biosafety Brief 2011/01[dostopno na daljavo] [citirano 15.4.2014]. Dostopno na svetovnem spletu: <http://genok.no/wp-content/uploads/2013/04/Biosafety-Brief-2011-01.pdf>.
  15. Life cycle analysis [dostopno na daljavo] [citirano 15.5.2014]. Dostopno na svetovnem spletu: <http://ruthtrumpold.id.au/designtech/pmwiki.php?n=Main.LifeCycleAnalysis>.
  16. Gottschalk, Fadri, SONDERER, Tobias, SCHOLZ, W. Roland, NOWACK, Bernd. Possibilities and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environmental toxicology and chemistry, 2010, 29(5), 1036–1048, doi: 10.1002/etc.135.
  17. SOM, Claudia, HALBEISEN, Marcel, KÖHLER, Andreas. Integration von Nanopartikeln in Textilen, Abschatzungen zur Stabilitat entlang des textilen Lebenszyklus, EMPA und TVS Textilverband Schweiz, St. Gallen, 2009, [dostopno na daljavo]. [citirano 15.9.2013] Dostopno na svetovnem spletu: <http://www.empa.ch/plugin/template/empa/*/78398/—/l=1>.
  18. BMU, Verantwortlicher Umgang mit Nanotechnologien: Bericht und Empfehlungen der NanoKomission der deutschen Bundesregierung, 2008, [dostopno na daljavo] [citirano 15.5.2014]. Dostopno na svetovnem spletu: <http://www.bmub.bund.de/fileadmin/bmu-import/files/pdfs/allgemein/application/pdf/nanokomm_abschlussbericht_2008.pdf>.
  19. HANDY, R., OWEN, R., in JONES-VALSAMI, E. The ecotoxicology of nanoparticles and nanomaterials: current status, knowledge gaps, challenges, and future needs. Ecotoxycology, 2008, 17(5), 315–325, doi: 10.1007/s10646-008-0206-0.
  20. FAREÉ, Marinella, SANCHÍS, Joseph, BARCELÓ, Damià. Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends in Analytical Chemsitry, 2011, 30(3), 517–527, doi:10.1016/j.trac.2010.11.014.
  21. OECD (Organisation for Economic Co-operation and Development, Science and Technology Policy: Nanotechnology, [dostopno na daljavo]. [citirano 15.5.2014] Dostopno na svetovnem spletu: <http://www.oecd.org/sti/nano/>.
  22. GOETZ, VON N., LORENZ, C., WINDLER, L., NOWACK, B., HEUBERGER, M., HUNGERBÜHLER, K. Migration of Ag- and TiO2-(Nano) particles from Textiles into Artificial Sweat under Physical Stress: Experiments and Exposure Modeling. Environmental Science and Technology, 2013, 47(17), 9979–9987, doi: 10.1021/es304329w.
  23. BERGER, Michael. Toxicology: From Coal Mine to Nanotechnology, Nanowerk LLC, 2007. [dostopno na daljavo]. [citirano 15.5.2014] Dostopno na svetovnem spletu: <http://www.nanowerk.com/spotlight/spotid=1382.php> .
  24. Oberdöster, Güunter. Toxicology of ultrafine particles: in vivo studies. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2000, 358(1775), 2719–2740, doi: 10.1098/rsta.2000.0680.
  25. NOHYNEK. G. J., LEDEMANN, J., RIBAUND, C., ROBERTS, M. S. Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 2007, 37(3), str. 251–277, doi: 10.1080/10408440601177780.
  26. BUTZ, Tilman, et al., Nanoderm project: Final Report: Quality of skin as a barrier to ultra-fine particles. [dostopno na daljavo]. [citirano 15.4.2014] Dostopno na svetovnem spletu: <http://www.uni-leipzig.de/~nanoderm/Downloads/downloads.html>.
  27. WU, Jianhong, LIU, Wei, XUE, Chenbing, ZHOU, Shunchang, LAN, Fengli, BI, Lei, XU, Huibi, YANG, Xiangliang, ZENG, Fan-Dian. Toxicity and penetration of TiO2 nanoparticles in hairless mice and porcine skin after subchronic dermal exposure. Toxicology Letters, 2009, 191(1), str. 1–8, doi: 10.1016/j.toxlet.2009.05.020.
  28. GULSON, Brian, WONG, Herbert, KORSCH, Michael, GOMEZ, Laura, CASEY, Philip, McCALL, Maxine, McCULLOCH, Malcolm, TROTTER, Julie, STAUBER, Jenny, GREENOAK, Gavin. Comparison of dermal absorption of zinc from different sunscreen formulations and differing UV exposure based on stable isotope tracing. Science of The Total Environment, 2012, 420, 313–318, doi: 10.1016/j.scitotenv.2011.12.046.
  29. LARESE, F. Francesca, D’AGOSTIN, Flavia, CROSERA, Matteo, ADAMI, Gianpiero, RENZI, Nadia, BOVENZI, Massimo, MAINA, Giovanni. Human skin penetration of silver nanoparticles through intact and damaged skin. Toxicology, 2009, 255(1–2), 33–37, doi: 10.1016/j.tox.2008.09.025.
  30. WICK, Peter, MALEK, Antoine, MANSER, Pius, MEILI, Danielle, Maeder-althaus, Xenia, DIENER, Liliane, DIENER, Pierre-Andre, ZISCH, Andreas, KRUG, F. Harald, VON MANDACH, Ursula. Barrier capacity of human placenta for nanosized material, Environmental Health Perspectives, 2010, 118(3), 218–228, doi: 10.1289/ehp.0901200.
  31. WALLACE, E. William, KEANE, J. Michael, MURRAY, K. David, CHISHOLM, P. William, MAYNARD, D. Andrew, ONG, Tong-man. Phospholipid lung surfactant and nanoparticle surface toxicity: lessons from diesel soots and silicate dusts. Journal of Nanoparticle Research, 2006, 9(1), 23–28, doi: 10.1007/s11051-006-9159-5.
  32. NEL, E. Andre, XIA, Tian in MÄDLER, Lutz. Toxic potential of materials at nanolevel. Science, 2006, 311(5761), 622–627, doi: 10.1126/science.1114397.
  33. NEL, E. Andre, MÄDLER, Lutz , VELEGOL, Darrell, XIA, Tian, HOEK, M. V. Eric, SOMASUNDARAN, Ponisseril, KLAESSIG, Fred, CASTRANOVA, Vince, THOMPSON, Mike. Understanding biophysiochemical interactions at the nano-bio interface. Nature Materials, 2009, 8(7), 543–557, doi: 10.1038/nmat2442.
  34. National Institute for Resources and Environment, Japan, [dostopno na daljavo]. [citirano 15.8.2014] Dostopno na svetovnem spletu: <http://www.nire.go.jp/eco_tec_e/hyouka_e.html>.
  35. BAALOUSHA, Mohammed, MANCIULEA, Adriana, CUMBERLAND, Susan, KENDALL, Kevin, LEAD, R. Jamie. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environmental toxicology and chemistry, 2008, 27(9), 1875–1882, doi: 10.1016/j.scitotenv.2008.11.022.
  36. DIEGOLI, Sara, MANCIULEA, L. Adriana, BEGUM, Shakiela, JONES, P. Ian, LEAD, R. Jamie, PREECE, A. Jon. Interaction between manufactured gold nanoparticles and naturally occuring organic macromolecules. Science of The Total Environment, 2008, 402(1), 51–61, doi: 10.1016/j.scitotenv.2008.04.023.
  37. RUSSELL, A. D., HUGO, W. B. Antimicrobial activity and action of silver. Progress in Medical Chemistry. Uredila ELLIS, G. P. in LUSCOMBE, D. K., vol. 31, poglavje 7, Amsterdam: Elsevier Science B.V., 1994, str. 351–370.
  38. NAVARRO, Enrique, PICCAPIETRA, Flavio, WAGNER, Bettina, MARCONI, Fabio, KAEGI, Ralf, ODZAK, Niksa, SIGG, Laura, BEHRA, Renata. Toxicity of silver nanoparticles to Chlamydomonas reinharditii. International Journal of Environmental Science and Technology, 2008, 42(23), 8959–8964, doi: 10.1021/es801785m.
  39. LUOMA, N. Samuel. Silver nanotechnologies and the environment: old problems and new challenges? Woodrow Wilson International Center for Scholars or The PEW Charitable Trusts, 2008. [dostopno na daljavo]. [citirano 15.4.2014] Dostopno na svetovnem spletu: <http://www.nanotechproject.org/process/assets/files/7036/nano_pen_15_final.pdf>.
  40. CHOI, O. CLEVENGER, T. E., DENG, B., SURAMPALLI, R. Y., ROSS, JR L., HU, Z. Role of sulfide and ligand strenght in controlling nanosilver toxicity. Water Research, 2009, 43(7), 1879–1886, doi:10.1016/j.watres.2009.01.029.
  41. KIM, Bojeong, PARK, Chee-Sung, MURAYAMA, Mitsuhiro, HOCHELLA, F. Michael Jr. Discovery and characterization of silver sulfide nanoparticles in final sewage sludge products. International Journal of Environmental Science and Technology, 2010, 44(19), 7509–7514, doi: 10.1021/es101565j.
  42. WIJNHOVEN, W. P. Susan, PEIJNENBURG, J. G. M. Willie, HERBERTS, A. Carla, HAGENS, I. Werner, OOMEN, G. Agnes, HEUGENS, H. W. Evelyn, ROSZEK, Boris, BISSCHOPS, Julia, GOSENS, Ilse, VAN DE MEENT, Dik, DEKKERS, Susan, DE JONG, H. Wim, VAN ZIJVERDEN, Maaike, SIPS, J. A. M. Adrienne, GEERTSMA, E. Robert. Nano-silver – a review of available data and knowledge gaps in human and environmental risk assessment. Nanotoxicology, 2009, 3(2), 109–138, doi:10.1080/17435390902725914.
  43. KUMAR, Radhesh, in MÜNSTEDT, Helmut. Silver ion release from antimicrobial polyamide/silver composites. Biomaterials, 2005, 26(4), 2081–2088, doi:10.1016/j.biomaterials.2004.05.030.
  44. GERANIO, L., HEUBERGER, M., NOWACK, B. Behavior of silver nano-textiles during washing. International Journal of Environmental Science and Technology, 2009, 43(21), str. 8113–8118, doi: 10.1021/es9018332.
  45. MIKKELSEN, H. Sonja, HANSEN, Eric, in CHRISTENSEN, B. Trine. Survey on basic knowledge about exposure and potential environmental and health risks for selected nanomaterials. Environmental Project, Danish Ministry of the Environment, Environmental Protection Agency, Denmark, 2011. [dostopno na daljavo]. [citirano 15.4.2014] Dostopno na svetovnem spletu: <http://www2.mst.dk/udgiv/publications/2011/08/978-87-92779-09-0.pdf>.
  46. TIEDE, K., BOXALL, A. B, WANG, X., GORE, D., TIEDE, D., BAXTER, M., DAVID, H., TEAR SP., LEWIS J. Application of hydrodynamic chromatography-ICP-MS to investigate the fate of silver nanoparticles in activated sludge. Journal of Analytical Atomic Spectrometry, 2010, 25(7), 1149–1154, doi: 10.1039/B926029C.
  47. THROBÄCK, N. Ingela, JOHANSSON, Mats, ROSENQUIST, Magnus, PELL, Mikael, HANSSON, Mikael, HALLIN, Sara. Silver (Ag+) reduces denitrification and induces enrichment of novel nirK genotypes in soil. FEMS Microbiology Letters, 2007, 270(2), 189–194, doi: 10.1111/j.1574-6968.2007.00632.x.
  48. BURY, R. Nicolas, WOOD, M. Chris. Mechanism of branchial apical silver uptake by rainbow trout is via the proton-coupled Na+ channel. American journal of physiology: Regulatory, integrative and comparative physiology, 1999, 277(5), 1385–1391.
  49. GROSELL, M., DE BOECK, G., JOHANNSSON, O., WOOD, C. M. The effects of silver on intestinal ion and acid-base regulation in the marine teleost fish. Comparative Biochemistry and Physiology Part C Toxicology & Pharmacology, 1999, 124(3), 259–270, doi: S0742-8413(99)00073-0.
  50. YEO, Min-Kyeong, PAK, Se-Wha. Exposing zebrafish to silver nanoparticles during caudal fin regeneration disrupts caudal fin growth and p53 signaling. Molecular & Cellular Toxicology, 2008, 4(4), str. 311–317.
  51. SCOWN, M. Tessa, SANTOS, M. Eduarda, JOHNSTON, D. Blair, GAISER, B., BAALOUSHA, Mohammed, MITOV, Svetlin, LEAD, R. Jamie, STONE, Vicki, FERNANDES, F. Teresa, JEPSON, Mark, VAN AERLE, Ronny, TYLER, R. Charles. Effects of aqueous exposure to silver nanoparticles of different sizes in rainbow trout. Toxicological Sciences, 2010, 115(2), 521–534, doi: 10.1093/toxsci/kfq076.
  52. TAKENAKA, Shinji, KARG, Erwin, ROTH, Christa, SCHULZ, Holger, ZIESENIS, Axel, HEINZMANN, Ulrich, SCHRAMEL, Peter, HEYDER, Joachim. Pulmonary and systematic distribution of inhaled ultrafine silver particles in rats. Environmental Health Perspectives, 2001, 109(s4), 547–551, doi: 10.1289/ehp.01109s4547.
  53. HSIN, Yi-Hong, CHEN, Chun-Feng, HUANG, Shing, SHIH, Tung-Sheng, ALI, Ping-Shan, CHUEH, P. Ju. The apoptotic effect of silver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters, 2008, 179(3), 130–139, doi:10.1016/j.toxlet.2008.04.015.
  54. ASHARANI, P. V., MUN, L. K. Grace, HANDE, P. Manoor, VALIYAVEETTIL, Suresh. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 2009, 3(2), 279–290, doi: 10.1021/nn800596w.
  55. FU, P. Peter, XIA, Qingsu, HWANG, Huey-Min, RAY, C. Paresh, YU, Hongtao. Mechanisms of nanotoxicity: Generation of reactive oxygen species. Journal of food and drug analysis, 2014, 22(1), 64–75, doi: doi:10.1016/j.jfda.2014.01.005.
  56. CHRISTIANSEN M. Frans, JOHNSTON, J. Helinor, STONE, Vicki, AITKEN, J. Robert, HANKIN, Steve, PETERS, Sheona, ASCHBERGER, Karin. Nano-silver – feasibility and challenges for human health risk assessment based on open literature. Nanotoxicology, 2010, 4(3), 284–295, doi: 10.3109/17435391003690549.
  57. JOHNSTON, J. Carl, DRISCOLL, E. Kevin, FINKELSTEIN, H. Jacob, BAGGS, R., O’REILLY, A. Michael, CARTER, Janet, GELEIN, Robert, OBERDÖRSTER, Günter. Pulmonary chemokine and mutagenic responses in rats after subchronic inhalation of amorphous and crystalline silica. Toxicological Sciences, 2000, 56(2), 405–413 doi: 10.1093/toxsci/56.2.405.
  58. CHANG, M. R., LEE, D. J., in LAI, J. Y. Nanoparticles in wastewater from a science-based industrial park – coagulation using polyaluminium chloride. Journal of Environmental Management, 2007, 85(4), 1009–1014, doi:10.1016/j.jenvman.2006.11.013.
  59. JARVIE, P. Helen, AL-OBAIDI, Hisham, KING, M. Stephen, BOWES, J. Michael, LAWRENCE, M. Jayne, DRAKE, F. Alex, GREEN, A. Mark, DOBSON, J. Peter. Fate of silica nanoparticles in simulated primary wastewater treatment, Environmental Science & Technology Letters, 2009, 43(22), 8622–8628, doi: 10.1021/es901399q.
  60. VAN HOECKE, Karen, DE SCHAMPHELAERE, A. C. Karel, VAN DER MEEREN, Paul, LUCAS, Stéphane, JANSSEN, R. Colin. Ecotoxicity of silica nanoparticles to the green alga Pseudokirchneriella subcapitata: importance of surface area. Environmental toxicology and chemistry, 2008, 27(9), 1948–1957, doi: 10.1897/07-634.1.
  61. ADAMS, K. Laura, LYON, Y. Delina, ALVAREZ, J. J. Pedro. Comparative ecotoxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Research, 2006, 40(19), 3527–3532, doi:10.1016/j.watres.2006.08.004.
  62. YIYI, Ye, LIU, Jianwen, SUN, Lijuan, CHEN, Mingcang, LAN, Minbo. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicology in Vitro, 2010, 24(3), 751–758, doi:10.1016/j.tiv.2010.01.001.
  63. PETERS, Kirsten, UNGER, Ronald E., KIRKPATRICK, C. James, GATTI, M. Antonietta, MONARI, Emanuela. Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation. Journal of Materials Science Materials in Medicine, 2004, 15(4), 321–325, doi: 10.1023/B:JMSM.0000021095.36878.1b.
  64. CHEN, Zhen, MENG, Huan, XING, Gengmei, YUAN, Hui, ZHAO, Feng, LIU, Ru, CHANG, Xuelin, GAO, Xueyun, WANG, Tiancheng, JIA, Guang, YE, Chang, CHAI, Zhifang, ZHAO, Yuliang. Age-related differences in pulmonary and cardiovascular responses to SiO2 nanoparticle inhalation: nanotoxicity has susceptible population. Environmental Science & Technology Letters, 2008, 42(23), 8985–8992, doi: 10.1021/es800975u.
  65. OVREVIK, J., LÅG, M., HOLME, J. A., SCHWARZE, P. E., REFSNES, M. Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. Toxicology, 2009, 259(1–2), 46–53, doi: 10.1016/j.tox.2009.01.028.
  66. DI PASQUA, J. Anthony, SHARMA, K. Krishna, SHI, Yan-Li, TOMS, B. Bonnie, OUELLETTE, Wayne, DABROWIAK, C. James, ASEFA, Tewodros. Cytotoxicity of mesoporous silica nanomaterials. Journal of Inorganic Biochemistry, 2008, 102(7), str. 1416–1423, doi:10.1016/j.jinorgbio.2007.12.028.
  67. LIN, Weisheng, HUANG, Yue-wern, ZHOU, Xiao-Dong, MA, Yinfa. In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 2006, 217(3), 252–259, doi:10.1016/j.taap.2006.10.004.
  68. NABESHI, Hiromi, YOSHIKAWA, Tomoaki, MATSUYAMA, Keigo, NAKAZATO, Yasutaro, MATSUO, Kazuhiko, ARIMORI, Akihiro, ISOBE, Masaaki, TOCHIGI, Saeko, KONDOH, Sayuri, HIRAI, Toshiro, AKASE, Takanori, YAMASHITA, Takuya, YAMASHITA, Kohei, YOSHIDA, Tokuyuki, NAGANO, Kazuya, ABE, Yasuhiro, YOSHIOKA, Yasuo, KAMADA, Haruhiko, IMAZAWA, Takayoshi, ITOH, Norio, NAKAGAWA, Shinsaku, MAYUMI, Tadanori, TSUNODA, Shin-ichi, TSUTSUMI, Yasuo. Systemic distribution, nuclear entry, and cytotoxicity of amorphous nanosilica following topical application. Biomaterials, 2011, 32(11), 2713–2724, doi: 10.1016/j.biomaterials.2010.12.042.
  69. MONTAZER, Majid, in SEIFOLLAHZADEH, Samira. Enhanced self-cleaning, antibacterial and UV protection properties of nano TiO2 treated textile through enzymatic pretreatment. Photochemistry and Photobiology, 2011, 87(4), 877–883, doi: 10.1111/j.1751-1097.2011.00917.x.
  70. ALLOUNI, E. Zouhir, HOL, J. Paul, CAUQUI, A, Miguel, GJERDET, R. Nils, CIMPAN, R. Mihaela. Role of physicochemical characteristics in the uptake of TiO2 nanoparticles. Toxicology in Vitro, 2012, 26(3), 469–479, doi:10.1016/j.tiv.2012.01.019.
  71. Subcommittee on Military Smokes and Obscurants; Commission on Life Sciences; Division on Earth and Life Studies; National Research Council. Toxicity of Military Smokes and Obscurants, Titanium Dioxide Smoke, poglavle 4. Washington: National academic Press, vol. 2, 1999, str. 68–96.
  72. HUND RINKE, Kerstin, SIMON, Markus. Ecotoxic effect of photocatalytic active nanoparticles TiO2 on algae and daphnids. Environmental Science and Pollution Research, 2006, 13(4), 225–232, doi: 10.1065/espr2006.06.311.
  73. ZHU, Xiaoshan, CHANG, Yung, CHEN, Yongsheng. Toxicity and bioaccumulation of TiO2 nanoparticles aggregates in Daphnia magna. Chemosphere, 2010, 78(3), 209–215, doi: doi:10.1016/j.chemosphere.2009.11.013.
  74. Bar-Ilan, Ofek, Louis, M. Kacie, Yang, P. Sarah, Pedersen, A. Joel, Hamers, J. Robert, Peterson, E. Richard, Heideman, Warren. Titanium dioxide nanoparticles produce phototoxicity in the developing zebra fish. Nanotoxicology, 2012, vol. 6, str. 670–679, doi: 10.3109/17435390.2011.604438.
  75. BAR-ILAN, Ofek, CHUANG, C. Connie, SCHWAHN, J. Denise, YANG, Sarah, JOSHI, Sanjay, PEDERSEN, A. Joel, HAMERS, J. Robert, PETERSON, E. Richard, HEIDEMAN, Warren. TiO2 nanoparticles exposure and illumination during zebrafish development: mortality at parts per billion concentration. Environmental Science & Technology Letters, 2013, 47(9), 4726–4733, doi: 10.1021/es304514r.
  76. RAMSDEN, S. Christopher, SMITH, J. Timothy, SHAW, J. Benjamin, HANDY, D. Richard. Dietary exposure to titanium dioxide nanoparticles in rainbow trout: no effect on growth, but subtle biochemical disturbances in the brain. Ecotoxicology, 2009, 18(7), 939–951, doi: 10.1007/s10646-009-0357-7.
  77. CLEMENTE, Z., CASTRO, V. L., FEITOSA, L. O., LIMA, R., JONSSON, C. M., MAIA, A. H. N., FRACETO, L. F. Fish exposure to nano-TiO2 under different experimental conditions: methodological aspects for nanoecotoxicology investigations. Science of The Total Environment, 2013, 463–464, 647–656, doi: 10.1016/j.scitotenv.2013.06.022.
  78. BATTIN J. Tom, KAMMER V. D. Frank, WEILHARTNER, Andreas, OTTOFUELLING, Stephanie, HOFMANN, Thilo. Nanostructured TiO2: transport behavior and effects on aquatic microbial communities under environmental conditions. Environmental Science & Technology Letters, 2009, 43(21), 8098–8104, doi: 10.1021/es9017046.
  79. WARHEIT, B. David, WEBB, T. Thomas, REED, L. Kenneth, FRERICHS, Scott, SAYES, M. Christie. Pulmonary toxicity study in rats with three forms of ultrafine-TiO2 nanoparticles: differential responses related to surface properties. Toxicology, 2007, 230(1), 90–104, doi: 10.1016/j.tox.2006.11.002.
  80. WANG, Jiangxue, ZHOU, Guoqiang, CHEN, Chunying, YU, Hongwei, WANG, Tiancheng, MA, Yongmei, JIA, Guang, GAO, Yuxi, LI, Bai SUN, Jin, LI, Yufeng, JIAO, Fang, ZHAO, Yuliang, CHAI, Zhifang. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicology Letters, 2007, 168(2), 176–185, doi: 10.1016/j.toxlet.2006.12.001.
  81. FADEEL, Bengt in GARCIA-BENNETT, E. Alfonso. Better safe than sorry: Understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications. Advanced Drug Delivery Reviews, 2010, 62(3), 362–374, doi: 10.1016/j.addr.2009.11.008.
  82. BUTZ, Tilman, et al. NANODERM, Quality of skin as a barrier to ultra-fine particles. Final report, 2007, University of Leipzig, Germany, [dostopno na daljavo]. [citirano 15.5.2014] Dostopno na svetovnem spletu: <http://www.uni-leipzig.de/~nanoderm/Downloads/Nanoderm_Final_Report.pdf>.
  83. GEISER, Marianne, RUTISHAUSER-ROTHEN, Barbara, KAPP, Nadine, SCHÜRCH, Samuel, KREYLING, Wolfgang, SCHULZ, Holger, SEMMLER, Manuela, IM HOF, Vinzenz, HEYDER, Joachim, GEHR, Peter. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environmental Health Perspectives, 2005, 113(11), 1555–1560, doi: 10.1289/ehp.8006.
  84. GURR, Jia-Ran, WANG, S. S. Alexander, CHEN, Chien-Hung, JAN, Kun-Yan. Ultrafine titanium dioxide particles in absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 2005, 213(1–2), 66–73, doi: 10.1016/j.tox.2005.05.007.
  85. OUKARROUM, Abdallah, BRAS, Sébastien, PERREAULT, François, POPOVIC, Radovan. Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta, Ecotoxicology and environmental safety, 2012, vol. 78, 80–85, doi: 10.1016/j.ecoenv.2011.11.012.
  86. BHATTACHARYA, Priyanka, LIN, Sijie, TURNER, P. James, CHUN KE, Pu. Physical adsorption of charged plastic nanoparticles affects algal photosynthesis. The Journal of Physical Chemistry C, 2010, 114(39), 16556–16561, doi: 10.1021/jp1054759.
  87. GONZALES, Leatitia, LISON, Dominique, VOLDERS-KIRSCH, Micheline. Genotoxicity of engineered nanomaterials: A critical review, Nanotoxicology, 2008, 2(4), 252–273, doi: 10.1080/17435390802464986.
  88. VALTINER, Markus, BORODIN, Sergiy, GRUNDMEIER, Guido. Stabilization and acidic dissolution mechanism of single-crystalline ZnO(0001) surfaces in electrolytes studied by in-situ AFM imaging and ex-situ LEED. Langmuir, 2008, 24(10), 5350–5358, doi: 10.1021/la7037697.
  89. XIA Tian, ZHAO, Yan, SAGER, Tina, GEORGE, Saji, POKHREL, Suman, LI, Ning, SCHOENFELD, David, MENG, Huan, LIN, Sijie, WANG, Xiang, WANG, Meiying, JI Zhaoxia, ZINK, Jeffrey I., MÄDLER, Lutz, CASTRANOVA, SHUO LIN Vincent, NEL Andre E.. Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in rodent lung and zebrafish embryos. ACS Nano, 2011, 5(2), 1223–1235, doi: 10.1021/nn1028482.
  90. PREMANATHAN, Mariappan, KARTHIKEYAN, Krishnamoorthy, JEYASUBRAMANIAN, Kadarkaraithangam, MANIVANNAN, Govindasamy. Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cellsby apoptosis through lipid peroxidation. Nanomedicine – Nanotechnology Biology and Medicine, 2011, 7(2), 184–192, doi: 10.1016/j.nano.2010.10.001.
  91. JI, Jing, LONGA, Zhifeng, LIN, Daohui. Toxicity of oxide nanoparticles to the green algae Chlorella sp.. Chemical Engineering Journal, 2011, 170(2–3), 525–530, doi: 10.1016/j.cej.2010.11.026.
  92. XIONG, Daowen, FANG, Tao, YU, Linpeng, XIAOFENG Sima, ZHU Wentao. Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Science of Total Environment, 2011, 409(8), 1444–1452, doi: 10.1016/j.scitotenv.2011.01.015.
  93. LIU, Guoqiang, WANG, Demin, WANG, Jianmin, MENDOZA, Cesar. Effect of ZnO particles on activated sludge: Role of particle dissolution. Science of Total Environment, 2011, 409(14), 2852–2857, doi: 10.1016/j.scitotenv.2011.03.022.
  94. LI, Mei, LIN, Daohui, ZHU, Lizhong. Effects of water chemistry on the dissolution of ZnO nanoparticles and their toxicity to Escherichia coli. Environmental Pollution, 2013, 173, 97–102, doi: 10.1016/j.envpol.2012.10.026.
  95. MWAANGA, Phenny, CARRAWAY, R. Elizabeth, VAN DEN HURK, Peter. The induction of biochemical changes in Daphnia magna by CuO and ZnO nanoparticles. Aquatic Toxicology, 2014, 150, 201–209, doi: 10.1016/j.aquatox.2014.03.011.
  96. LU, Senlin, DUFFIN, Rodger, POLAND, Craig, DALY, Paul, MURPHY, Fiona, DROST, Ellen, MACNEE, William, STONE, Vicki, DONALDSON, Ken. Efficacy of simple short-term in vitro assays for predicting the potential of metal oxide nanoparticles to cause pulmonary inflammation. Environmental Health Perspectives, 2009, vol. 117(2), 241–247, doi: 10.1289/ehp.11811.
  97. XIA, Tian, KOVOCHICH, Michael, LIONG, Monty, MÄDLER, Lutz, GILBERT, Benjamin, SHI, Haibin, YEH, I: Joanne, ZINK, I. Jeffrey, NEL, E. Andre. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2008, 2(10), 2121–2134, doi: 10.1021/nn800511k.
  98. XIA, Tian, KOVOCHICH, Michael, BRANT, Jonathan, HOTZE, Matt, SEMPF, Joan, OBERLEY, Terry, SIOUTAS, Constantinos, YEH, I. Joanne, WIESNER, R. Mark, NEL, E. Andre. Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 2006, 6(8), 1794–1807, doi: 10.1021/nl061025k.
  99. TRIPATHY, Nirmalya, HONG, Tae-Keun, HA, Ki-Tae, JEONG, Han-Sol, HAHN, Yoon-Bong. Effect of ZnO nanoparticles aggregation on the toxicity in RAW 264.7 murine macrophage. Journal of Hazardous Materials, 2014, 270, 110–117.
  100. JIANG, Wei, MASHAYEKHI, Hamid, XING, Baoshan. Bacterial toxicity comparison between nano- and micro-scaled oxide particles. Environmental Pollution, 2009, 157(5), 1619–1625, doi: 10.1016/j.jhazmat.2014.01.043.
  101. WANG, Huanhua, WICK, L. Robert, XING, Baoshan. Toxicity of nanoparticulate and bulk ZnO, Al2O3 and TiO2 to the nematode Caenorhabditis elegans, Environmental Pollution, 2009, 157(4), 1171–1177, doi: 10.1016/j.envpol.2008.11.004.
  102. XU, Mingsheng, FUJITA, Daisuke, KAJIWARA, Shoko, MINOWA, Takashi, LI, Xianglan, TAKEMURA, Taro, IWAI, Hideo, HANAGATA, Nobutaka. Contribution of physicochemical characteristics of nano-oxides to cytotoxicity, Biomaterials, 2010, 31(31), 8022–8031, doi: 10.1016/j.envpol.2008.11.004.
  103. INOUE, K., TAKANO, H., OHNUKI, M., YANAGISAWA, R., SAKURAI, M., SHIMADA, A., MIZUSHIMA, K., YOSHIKAWA, T. Size effects of nanomaterials on lung inflammation and coagulatory disturbance. International Journal of Immunopathological Pharmacology, 2008, 1, 197–206.
  104. LIN, Weisheng, STAYTON, Isaac, HUANG, Yue-Wern, ZHOU, Xiao-Dong, MA, Yinfa. Cytotoxicity and cell membrane depolarization induced by aluminium oxide nanoparticles in human lung epithelial cells A549. Toxicological & Environmental Chemistry, 2008, 90(5), 983–996, doi: 10.1080/02772240701802559.
  105. ZHANG, Xiao Qiang, YIN, Li Hong, TANG, Meng, PU, Yue Pu. ZnO, TiO2, SiO2, and Al2O3 nanoparticles-induced toxic effects on human fetal lung fibroblasts. Biomedical and Environmental Sciences, 2011, 24(6), 661–669, doi: 10.3967/0895-3988.2011.06.011.
  106. HUEBNER, J. HENRY, PHILLIPS, D. TIMOTHY. Clay-based affinity probes for selective cleanup and determination of aflatoxin B1 using nanostructured montmorillonite on quartz. Journal of AOAC International, 2003, 86(3), 534–539.
  107. KUNZMANN, Andrea, ANDERSSON, Britta, THURNHERR, Tina, KRUG, Harald, SCHEYNIUS, Annika, FADEEL, Bengt. Toxicology of engineered nanomaterials: Focus on biocompatibility, biodistribution and biodegradation. Biochimica et Biophysica Acta (BBA) – General Subjects, 2011, 1810(3), 361–373, doi: 10.1016/j.bbagen.2010.04.007.
  108. BOCZKOWSKI, Jorge in LANONE, Sophie. Respiratory toxicities of nanomaterials – A focus on carbon nanotubes, Advanced Drug Delivery Reviews, 2012, 64(15), 1694–1699, doi: 10.1016/j.addr.2012.05.011.
  109. DE VOLDER, F. L. MICHAEL, TAWFICK, H. SAMEH, BAUGHMAN, H. RAY, HART, A. JOHN. Carbon nanotubes: present and future commercial applications, Science, 2013, 339(6119), 535–539, doi: 10.1126/science.1222453.
  110. KÖHLER, R. Andreas, SOM, Claudia, HELLAND, Aasgeir, GOTTSCHALK, Fadri. Studying the potential release of carbon nanotubes throughout the application life cycle. Journal of Cleaner Production, 2008, 16(8–9), 927–937, doi: 10.1016/j.jclepro.2007.04.007.
  111. ZHAO, Xingchen, in LIU, Rutao. Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environment International, 2012, 40, 244–256, doi: 10.1016/j.envint.2011.12.003.
  112. Carbon nanotube peapods for quantum computing, [dostopno na daljavo]. [citirano 15.4.2014] Dostopno na svetovnem spletu: <http://www.physics.ox.ac.uk/nanotech/research/nanotubes/index.html>.
  113. CHEN, Kai Loon, SMITH, A. Billy, BALL, P. William, FAIRBROTHER, D. Howard. Assessing the colloidal properties of engineered nanoparticles in water: case studies from fullerene C-60 nanoparticles and carbon nanotubes. Environmental chemistry, 2010, 7(1), 10–27, doi: 10.1071/EN09112.
  114. HELLAND, Aasgeir, WICK, Peter, KOEHLER, Andreas, SCHMID, Kaspar, SOM, Claudia. Reviewing the environmental and human health knowledgebase of carbon nanotubes. Environmental Health Perspectives, 2007, 115(8), 1125–1131, doi: 10.1289/ehp.9652.
  115. HYUNG, Hoon, FORTNER, D. John, HUGHES, B. Joseph, KIM, Jae-Hong. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. International Journal of Environmental Science and Technology, 2007, 41(1) 179–184, doi: 10.1021/es061817g.
  116. CHENG, Jinping, FLAHAUT, Emmanuel, CHENG, Shuk Han. Effect of carbon nanotubes on developing zebrafish (Danio rerio) embryos. Environmental Toxicology and Chemistry, 2007, 26(4), 708–716, doi: 10.1897/06-272R.1.
  117. CHENG, Jinping, CHAN, Chung Man, VECA, L. Monica, POON, Wing Lin, CHAN, Po Kwok, QU, Liangwei, SUN, Ya-Ping, CHENG, Shuk Han. Acute and long-term effects after single loading of functionalized multi-walled carbon nanotubes in zebrafish (Danio rerio). Toxicology and applied pharmacology, 2009, 235(2), 216–225, doi: 10.1016/j.taap.2008.12.006.
  118. CANAS, E. Jaclyn, LONG, Monique, NATIONS, Shawna, VADAN, Rodica, DAI, Lenore, LUO, Mingxiang. Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of selected crop species. Environmental Toxicology and Chemistry, 2008, 27(9), 1922–1931, doi: 10.1897/08-117.1.
  119. GRUBEK-JAWORSKA, H., NEJMAN, P., CZUMIŃSKA, K., PRZYBYŁOWSKI, T., HUCZKO, A., LANGE, H., BYSTRZEJEWSKI, M., BARANOWSKI, P., CHAZAN, R. Preliminary results on the pathogenic effects of intratracheal exposure to one-dimension nanocarbons. Carbon, 2006, 44(6), 1057–1063, doi: 10.1016/j.carbon.2005.12.011.
  120. KAGAN, E. Valerian, KONDURU, V. Nagarjun, FENG, Weihong, ALLEN, L. Brett, CONROY, Jennifer, VOLKOV, Yuri, VLASOVA, I. Irina, BELIKOVA, A. Natalia, YANAMALA, Naveena, KAPRALOV, Alexander, TYURINA, Y. Yulia, SHI, Jingwen, KISIN, R. Elena, MURRAY, R. Ashley, FRANKS, Jonathan, STOLZ, Donna, GOU, Pingping, KLEIN-SEETHARAMAN, Judith, FADEEL, Bengt, STAR, Alexander, SHVEDOVA, A. Anna. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nature Nanotechnology, 2010, 5(5), 354–359, doi: 10.1038/nnano.2010.44.
  121. NARSIMHA REDDY, A. RAMA, NARSIMHA REDDY, Y., KRISHNA, R. DEVARAKONDA, HIMABINDU, V. Pulmonary toxicity assessment of multiwalled carbon nanotubes in rats following intratracheal instillation. Environmental Toxicology, 2010, 27(4), 211–219, doi: 10.1002/tox.20632.
  122. POLAND, A. Craig, DUFFIN, Rodger, KINLOCH, Ian, MAYNARD, Andrew, WALLACE, A. H. William, SEATON, Anthony, STONE, Vicki, BROWN, Simon, MacNEE, William, DONALDSON, Ken. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology, 2008, 3(7), 423–428, doi: 10.1038/nnano.2008.111.
  123. EISEN, Ellen, COSTELLO, Sadie, CHEVRIER, Jonathan, PICCIOTTO, Sally. Epidemiologic challenges for studies of occupational exposure to engineered nanoparticles: a commentary. Journal of Occupational and Environmental Medicine, 2011, 53, S57–S61, doi: 10.1097/JOM.0b013e31821bde98.
  124. KENNEDY, J. ALAN, HULL, S. MATTHEW, STEEVENS. A. JEFFERY, DONTSOVA, M. KATERINA, CHAPPELL, A. MARK, GUNTER, C. JONAS, WEISS, A. CHARLES. Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment. Environmental Toxicology and Chemistry, 2008, 27(9), 1932–1941, doi: 10.1897/07-624.1.
  125. Mroz, R. M., SCHINS, R. P. F., LI, H., DROST, E. M., MACNEE, W., DONALDSON, K. Nanoparticle carbon black driven DNA damage induces growth arrest and AP-1 and NF jappa B DNA binding in lung epithelial A549 cell line. Journal of Physiology and Pharmacology, 2007, 58(5), 461–470.
  126. BORM, J. Paul, CAKMAN, Gonca, JERMANN, Erich, WEISHAUPT, Christel, KEMPERS, Pascal, VAN SCHOOTEN, Frederik Jan, OBERDÖRSTER, Günter, SCHINS, P. F. Roel. Formation of PAH-DNA adducts after in vivo and in vitro exposure of rats and lung cells to different commercial carbon blacks. Toxicology and applied pharmacology, 2005, 205(2), 157–167, doi: 10.1016/j.taap.2004.10.020.
  127. SANTHAMAN, Priya, WAGNER, G. James, ELDER, Alison, GELEIN, Robert, CARTER, Janet, DRISCOLL, Kevin, OBERDÖRSTER, Günter, HARKEMA, Jack. Effects of subchronical inhalation exposure to carbon black nanoparticles in the nasal airways of laboratory rats. International Journal of Nanotechnology, 2008, 5(1), 30–54, doi: 10.1504/IJNT.2008.016712.
  128. MO, Sarah. What-is-oxidative-stress? All about the Neuro-Endo-Imune Supersystem, 2013. [dostopno na daljavo]. [citirano 15.4.2014] Dostopno na svetovnem spletu: <http://neuroendoimmune.wordpress.com/2013/10/08/what-is-oxidative-stress/>.
  129. MONEY, S. Eric, BARTON, E. Lauren, DAWSON, Joseph, RECKHOW, H. Kenneth, WIESNER, R. Mark. Validation and sensitivity of the FINE Bayesian network for forecasting aquatic exposure to nano-silver. Science of the total environment, 2014, 473–474, 685–691, doi: 10.1016/j.scitotenv.2013.12.100.

23   The Influence of Modacrylic and Metal Protective Fibres in the Mixture on the Mechanical Properties

……of Ring-Spun Yarns for Protective Textiles

……Dunja Šajn Gorjanc1, Neža Sukič1 and Veronika Vrhunc2  Abstract and References

1University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, Snežniška ulica 5, SI-1000 Ljubljana

2Predilnica Litija, Kidričeva 1, SI-1270 Litija

Original Scientific Article

Received 01-2015 • Accepted 02-2015

Corresponding author:

Assis. Prof. D.Sc. Dunja Šajn Gorjanc

E-mail: dunja.sajn@ntf.uni-lj.si

 

Abstract

The research is focused on the influence of the fire resistant modacrylic (MAC) fibres in the ring-spun yarn mixture with cotton (CO) fibres and of the conductive metal fibres (MTF) in the ring-spun yarn mixture with polyester (PES) fibres on the mechanical properties in the region of lower loads. Analysed yarns are intended for the protective clothing production (fire resistant and electrically conductive clothing). The viscoelastic behavior of yarns in the field of lower loads under the specific stress/extension curve which amounts to 5 cN/tex, reaching the weight of 85 g. The results of the research show that the incorporation of MAC fibres in the yarn from the mixture of 55% MAC/45% CO fibres increases the region of elastic deformations (the stress and extension in the yield point), on the other side the MAC fibres in the yarn mixture decrease the elasticity modulus level. The incorporation of MTF (stainless stell) fibres in the yarn mixture consisting of 75% PES/25% MTF decreases the region of elastic deformations (about 10%), however the region of elastic deformations lies very close to the chosen stress value under the specific stress/extension curve – 5 cN/tex or 85 g.

Keywords: modacrylic fibres, metal fibres, ring-spun yarn, mechanical properties, viscoelastic properties

 

References

  1. SCOTT, Richard, A. Textiles for Protection. Edited by R. A. Scott. Cambridge : Woodhead Publishing, 2005, pp. 3–22.
  2. HORROCKS, A. R., SUBHASH, C. Anand. Handbook of Technical Textiles, Edited by A. Richard Horrocks, C. Subhash Anand. 1st Edition. Cambridge : Woodhead Publishing, 2000, pp. 42–60.
  3. LAWRENCE, Carl A. Fundamentals of Spun Yarn Technology. Boca Raton : CRC Press, 2003, pp. 38–44.
  4. NDLOVU, Lloyd N., CUNCHAO, Han, CHONGWEN, Yu. Mechanical and FR properties of different ratios of cotton/polysulfonamide (PSA) core spun and blended yarns, Journal of Engineered Fibres and Fabrics, 2014, 9(4), 24–33.
  5. VALASEVIČIŪTĖ, L., MILAŠIUS, R., BAGDONIENĖ, R., ABRAITIENĖ, A. Investigation of end-use properties of fabrics from metaaramid yarns. Materials Science, 2003, 9(4), 391–394.
  6. LAVRENTEVA, E.P. New-generation fire- and heat-resistant textile materials for working clothes, Fibre Chemistry, 2013, 45(2), pp. 107–113.
  7. OZCAN, Gulay, DAYIOGLU, Habip, CANDAN, Cevza. Effect of gray fabric properties on flame resistance of knitted fabric. Textile Research Journal, 2003, 73 (10), 883–891, doi: 10.1177/004051750307301006.
  8. Textile Innovation Knowledge Platform dostopno na daljavo, TIKP citirano 10.12.2014. Dostopno na svetovnem spletu: http://www.tikp.co.uk/>.
  9. BUKOŠEK, Vili. Program Dinara® Meritve®. Ljubljana : Univerza v Ljubljani, Fakulteta za naravoslovje in tehnologijo, Oddelek za tekstilstvo, 1989.
  10. MISHRA, S. P. A Text Book of Fibre Science and Technology. Edited by S. P. Mishra. 1st Edition. New Delhi : New age International Publisher, 2010, 363 p.
  11. COOK, J. Gordon. Handbook of Textile fibres: Man–made fibresReprinted. Cambridge: Woodhead Publishing Limited, 2009, p. 639–716.
  12. BOURBIGOT, Serge, FLAMBARD, Xavier. Heat resistance and flammability of high performance fibres: A review. Fire and Materials, 2002, 26(4–5), 155–168, doi: 10.1002/fam.799.
  13. KHAN, Q., Muhammad, SABEEH UL HASSAN, Muhammad, HAFEEZ, Sajida, ur REHMAN, Fazul. Manufacturing of industrial fire retardant gloves using blends of cotton and synthetic fibres. International Journal of Engineering Sciences & Research Technology3(5), 2014, p. 747–756.
  14. VARNAITĖ, Sandra, KATUNSKIS, Jurgis. Influence of Washing on the Electric Charge Decay of Fabrics with Conductive Yarns. Fibres & Textiles in Eastern Europe, 2009, 17(5 ), pp. 69–75.
  15. SEKERDEN, Filiz. Effect of the constructions of metal fabrics on their electrical resistance. Fibres & Textiles in Eastern Europe, 2013, 21(6), pp. 58–63.
  16.  SABRI OZEN, Mustafa, SANCAK, Erhan, BEYIT, Ali, USTA, Ismail, AKALIN, Mehmet. Investigation of electromagnetic shielding properties of needle–punched nonwoven fabrics with stainless steel and polyester fiber. Textile Research Journal, 2013, 83(8), pp. 849–858, doi: 10.1177/0040517512461683.
  17. SU, Ching–Iuan, CHERN, Jin–Tsair. Effect of Stainless Steel–Containing Fabrics on Electromagnetic Shielding Effectiveness. Textile Research Journal, 2004, 74(1), 51–54, doi: 10.1177/004051750407400109.

33   The Effects of Lipase and Cutinase Enzyme Surface Treatments on Light Reflectance and Colour Changes

……in Non-Circular Cross-Sectional Polyester

……Xiaosong Liu1,2, Ian R. Hardin1 and Fumei Wang2,3 Abstract and References

1The University of Georgia, College of Family and Consumer Science, Department of Textiles, Merchandising and Interiors, Athens, GA 30602, USA

2Donghua University, College of Textiles, Shanghai 201620, People’s Republic of China

3Key Lab of Textile Science and Technology, Ministry of Education, Shanghai 201620, People’s Republic of China

Original Scientific Article

Received 09-2014 • Accepted 01-2015

Corresponding author:

Xiaosong Liu

Tel.: 00 1 404 86 13681956267

E-mail: xiaosongliu7405@aiyun.com

 

Abstract

Lipase and cutinase enzymes were applied to non-circular cross-sectional polyester fibres. Reflectance and colour changes of the fibres were investigated under specific treatment conditions. The results indicated that lipase L0777 did not affect these fibres, regardless of time of treatment or changes in pH. With cutinase, pits on the surfaces of the fibres occurred when cutinase was applied at 55oC and pH of 7.00 and 8.50, respectively, for 24 hours. This was demonstrated by reflectance and colour changes, as well as by SEM images. The wide-angled x-ray diffraction (WAXD) curves of the cutinase-treated fabrics were ambiguous in that the small changes may have been the result of heat rather than enzyme treatment. Differential scanning calorimetry (DCS) results for both untreated and cutinase-treated polyester fibres showed obvious changes. The peak at 250oC did not change but that at 265oC increased in area, indicating re-crystallisation.

Keywords: reflectance, colour, lipase, cutinase, polyester fabric

 

References

  1. BOIDIN, A., EFFRONT J. Process for treating amylaceous Substances. United States Patent. No. 1,227,374, Serial No. 799490, Maj 1917.
  2. BUSCHLE‒DILLER, G., ZERONIAN, S.H., PAN N., YOON M. H. Enzymatic Hydrolysis of Cotton, Linen, Ramie, and Viscose Rayon Fabrics. Textile Research Journal, 1994, 64(5), 270‒279, doi: 10.1177/004051759406400504.
  3. BACH, E., SCHOLLMEYER, E. Kinetische Untersuchungen zum enzymatischen Abbau von Baumwollpektin. Textilveredlung, 1992, 27(1), 2.
  4. RÖSSNER, U. Enzymatic degradation of impurities in cotton. Melliand Textilberichte. 1993, 74, 144‒148.
  5. STOHR R. Enzymatic-biocatalysts in textile finishing. Melliand Textilberichte in English, 1995, 11, 1010-1013.
  6. TYNDALL, R. M. Application of cellulase enzymes to cotton fabrics and garments. Textile Chemist and Colourist, 1992, 24(6), 23‒26.
  7. BUSCHLE‒DILLER, G., ZERONIAN, S. H.. Enhancing the reactivity and strength of cotton fibers. Journal of Applied Polymer Science, 1992, 45(6), 967‒979, doi: 10.1002/app.1992.070450604.
  8. BUSCHLE‒DILLER, G., ZERONIAN, S.H., Pan N. Enzymatic hydrolysis of cotton, linen, ramie and viscose rayon fabrics. Textile Research Journal, 1994, 64(5), 270‒279, doi: 10.1177/004051759406400504.
  9. BUSCHLE‒DILLER, G., ZERONIAN, S.H. Enzymatic and Acid Hydrolysis of Mercerized Cotton. Textile Chemist and Colourist, 1994, 26(4), 17‒24.
  10. LI, Y.H. HARDIN, I. R. Enzymatic Scouring of Cotton. Book of Papers AATCC International Conference&Exhibition, 1996, 87‒100.
  11. HARDIN, I. R., LI, Y.H. Enzymatic Scouring of Cotton: Effects on Structure and Properties. Textile Chemist and Colourist, 1997, 29(8), 71‒76.
  12. HARDIN, I. R., LI, Y.H. A Comparison Between Enzymatic Scouring and Alkaline Scouring of Cotton. 1997 Proceedings Beltwide Cotton Conferences, 1997, 745‒747.
  13. LANGE, N. K. Enzymatic Preparation of Cotton. Book of Papers AATCC International Conference and Exhibition, 1996, 101‒108.
  14. LANGE, N. K., LIU, J., HUSAIN, P., CONDON. B. Bio-preparation of cotton. Book of papers on the International Conference and Exhibition of the AATCC, Philadelphia,. 1998, 463‒471.
  15. LANGE, N. K., LIU, J., HUSAIN, P., CONDON. B. Cotton biopreparation – a new enzymatic concept. Enzyme Business. 1999, 10, 1‒12.
  16. LANGE, N. K., LIU, J. HUSAIN, P., CONDON, B. Novo Nordisk Enzyme Business Article A6611a‒GB, 1999.
  17. ZERONIAN, S. H., COLLINS, M. J. Surface modification of polyester by alkaline treatments. Textile Progress, 1989, 20(2), 1-26, doi: 10.1080/00405168908688948.
  18. VAN BEILEN, Jan B., LI, Zhi. Enzyme technology: an overview. Biotechnology, 2002, 13, 338‒344, doi: 10.1016/S0958-1669(02)00334-8.
  19. GUEBITZ, Georg M., CAVACO‒PAULO, Artur. Enzymes go big: surface hydrolysis and functionalisation of synthetic polymers. Trends in Biotechnology, 2007, 26(1), 32‒38, doi: 10.1016/j.tibtech.2007.10.003.
  20. SHARMA, Rohit, CHISTI, Yusuf, BANERJEE, Uttam Chand. Production, purification, characterization, and applications of lipases. Biotechnology Advances, 2001, 19, 627‒662.
  21. SCHMID, Andreas, HOLLMANN, Frank, PARK, Jin Byung, BÜHLER Bruno. The use of enzymes in the chemical industry in Europe. Biotechnology, 2002, 13(4), 359‒366, doi: 10.1016/S0958-1669(02)00336-1.
  22. KIRK, Ole, BORCHERT, Torben Vedel, FUGLSANG, Claus Crone. Industrial enzyme applications. Biotechnolog, 2002, 13(3), 345‒351, doi: 10.1016/S0958-1669(02)00328-2.
  23. PANKE, Sven, WUBBOLTS, Marcel G. Enzyme technology and bioprocess engineering, Biotechnology, 2002, 13(2), 111–116, doi: 10.1016/S0958-1669(02)00302-6.
  24. TOKIWAY, Y., SUZUKI, T. Hydrolysis of polyesters by lipases. Nature letters, 1977, 270(5632), 76‒78. doi: 10.1038/270076a0.
  25. TOKIWA Y., SUZUKI T. Hydrolysis of Polyesters by Rhizopus delemar Lipase. Agricultural and Biological Chemistry, 1978, 42(5), 1071‒1072, doi: 10.1271/bbb1961.42.1071.
  26. TOKIWA, Yutaka, SUZUKI, Tomoo, TAKEDA, Kiyoshi. Two types of lipases in hydrolysis of polyester. Agricultural and Biological Chemistry, 1988, 52(8), 1937‒1943, doi: 10.1271/bbb1961.52.1937.
  27. TORSEN, Walter, AUGUSTA, Josef, MULLER, Rolf‒Joachim, WIDDECKE, Hartmut, KLEIN, Joachim. Enzymatic degradation of a model polyester by lipase from Rhizopus delemar, Enayme and Microbial Technology. 1995, 17(3), 218‒224, doi: 10.1016/0141-0229(94)00007-E.
  28. TADROS, R. M., NOUREDDINI H., TIMM D. C. Biodegradation of Thermoplastic and hermosetting Polyesters from Z-Protected Glutamic Acid. Journal of Applied polymer Science, 1999, 74(14), 3513‒3521, doi: 10.1002/(SICI)1097-4628(19991227)74:14<3513::AID-APP27>3.0.CO;2-F.
  29. MARTEN, Elke, MULLER, Rolf‒Joachim, DECKWER, Wolf‒Dieter. Studies on the enzymatic hydrolysis of polyesters I. Low molecular mass model esters and aliphatic polyesters. Polymer Degradation and Stability, 2003, 80(3), 485‒501, doi: 10.1016/S0141-3910(03)00032-6.
  30. MARTEN, Elke, MULLER, Rolf‒Joachim, DECKWER, Wolf‒Dieter. Studies on the enzymatic hydrolysis of polyesters. II. Aliphatic–aromatic copolyesters, Polymer Degradation and Stability. 2005, 88(3), 371‒381, doi: 10.1016/j.polymdegradstab.2004.12.001.
  31. LIM, Hyun‒A, RAKU, Takao, TOKIWA, Yutaka. Hydrolysis of polyesters by serine proteases. Biotechnology Letters. 2005, 27(7), 459‒464, doi: 10.1007/s10529-005-2217-8.
  32. HERZOG, K., MULLER, R J., DECKWER, W. D. Mechanism and kinetics of the enzymatic hydrolysis of polyester nanoparticles by lipases. Polymer Degradation and Stability, 2006, 91(10), 2486‒2498, doi: 10.1016/j.polymdegradstab.2006.03.005.
  33. HSIEH, Y. L., CRAM, L. A. Enzymatic hydrolysis to improve wetting and absorbency of polyester fabrics. Textile Research Journal, 1998, 68(5), 311‒319, doi: 10.1177/004051759806800501.
  34. CHAYA, Etsushi, KITANO, Michio. Possibility of Modifying Polyester Fibers Using Lipases. Sen’i Gakkaish, 1999, 55(5), P150‒P154, doi: org/10.2115/fiber.55.5_p150.
  35. ĐORDEVIĆ, D. M., PETRONIJEVIĆ, Ž. B., CVETKOVIĆ, D.M. Polyester fabric modification by some lipases. Chemical Industry and Chemical Engineering Quarterly, 2005, 11(4), 183‒188, doi: 10.2298/CICEQ0504183D.
  36. ALISCH‒MARK, Mandy, HERRMANN, Anne, ZIMMERMANN, Wolfgang. Increase of the Hydrophilicity of Polyethylene Terephthalate Fibres by Hydrolases from Thermomonospora fusca and Fusarium solani f. sp.pisi. Biotechnology Lette, 2006, 28(10), 681‒685, doi: 10.1007/s10529-006-9041-7.
  37. KIM, Hye Rim, SONG, Wha Soon. Lipase treatment of polyester fabrics. Fibres and Polymers, 2006, 7(4), 339‒343, doi: 10.1007/BF02875764.
  38. KIM, Hye Rim, SONG, Wha Soon . Lipase treatment to improve hydrophilicity of polyester fabrics. International Journal of Clothing Science and Technology, 2010, 22(1), 25‒34. doi: 10.1108/09556221011008785.
  39. LEE, S. H. and SONG, W. S. Surface modification of polyester fabrics by enzyme treatment. Fibres and Polymers, 2010, 11(1), 54‒59, doi: 10.1007/s12221-010-0054-4.
  40. KIM, Hye Rim, SONG, Wha Soon. Effects of Triton X-100 and Calcium Chloride on the Porcine Pancreas Lipase Treatment of PET Fabrics, Journal of the Korean Society of Clothing and Textiles. 2008, 32(6), 911‒917, doi: 10.5850/JKSCT.2008.32.6.911.
  41. KHODDAMI, Akbar, MORSHED, Mohammad, TAVANAI, Hossein. Effects od enzymatic hydrolysis on drawn polyester filament yarns. Iranian Polymer Journal. 2001, 10(6), 363‒370.
  42. BILLIG, Susan, OESER, Thorsten, BIRKEMEYER, Claudia, ZIMMERMANN, Wolfgang. Hydrolysis of cyclic poly(ethylene terephthalate) trimers by a carboxylesterase from Thermobifida fusca KW3, Applied Microbiology and Biotechnology, 2010, 87(5), 1753‒1764, doi: 10.1007/s00253-010-2635-y.
  43. DONELLI, Ilaria, TADDEI, Paola, SMET, Philippe F., POELMAN, Dirk, NIERSTRASZ, Vincent A., FREDDI, Giuliano. Enzymatic surface modification and functionalization of PET: A water contact angle, FTIR, and fluorescence spectroscopy study. Biotechnology and Bioengineering, 2009, 103(5), 845‒856, doi: 10.1002/bit.22316.
  44. MASAKI, Kazuo, KAMINI, Numbi Ramudu, IKEDA, Hiroko and IEFUJI, Haruyuki. Cutinase-Like Enzyme from the Yeast Cryptococcus sp. Strain S-2 Hydrolyzes Polylactic Acid and Other Biodegradable Plastics, Applied and Environmental Microbiology, 2005, 71(11), 7548‒7550, doi: 10.1128/AEM.71.11.7548-7550.2005.
  45. VERTOMMEN, M. A. M. E., NIERSTRASZ, van der VEER, V. A., M., WARMOESKERKEN, M. M. C. G. Enzymatic surface modification of poly(ethylene terephthalate), Journal of Biotechnology, 2005, 120(4), 376‒386, doi: 10.1016/j.jbiotec.2005.06.015.
  46. DONELLI, Ilaria, FREDDI, Giuliano, NIERSTRASZ A., Vincent, TADDEI, Paola. Surface structure and properties of poly-(ethylene terephthalate) hydrolysed by alkali and cutinase. Polymer Degradation and Stabilit, 2010, 95, 1542‒1550, doi: 10.1016/j.jbiotec.2005.06.015.
  47. SILVA, Carla, DA, Shi, SILVA, Nádia, MATAMÁ, Teresa, ARAÚJO, Rita, MARTINS, Madalena, CHEN, Sheng, CHEN, Jian, WU, Jing, CASAL and Margarida, CAVACO‒PAULO, Artur. Engineered Thermobifida fusca cutinase with increased activity on polyester substrates. Biotechnology. Journal, 2011, 6(10), 1230‒1239, doi: 10.1002/biot.201000391.
  48. SULAIMAN, Sintawee, YAMATO, Saya, KANAYA, Eiko, KIM, Joong‒Jae, KOGA, Yuichi, TAKANO, Kazufumi and KANAYA, Shigenori. Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach. Applied and Environmental Microbiology, 2012, 78(5), 1556‒1562, doi: 10.1128/AEM.06725-11.
  49. RONKVIST, Asa M., XIE, Wenchun, LU, Wenhua, GROSS A., Richard. Surprisingly Rapid Enzymatic Hydrolysis of Poly(ethylene terephthalate). Green Polymer Chemistry: Biocatalysis and Biomaterials. 2011, Chapter 26, 385‒404. doi: 10.1021/bk-2010-1043.ch026.
  50. HOOKER, Jacob, HINKS, David, MONTERO, Gerardo and ICHERENSKA. Magdelena. Enzyme-catalyzed hydrolysis of poly(ethylene terephthalate) cyclic trimer. Journal of Applied Polymer Science, 2003, 89(9), 2545‒2552, doi: 10.1002/app.11963.
  51. RECELJ, Petra, GORENŠEK, Marija. The Influence of Treatment Conditions on the Quantity and Composition of Oligomers Extracted from Polyester Fabric Textile Research Journal, 2002, 72(5) 447–453, doi: 10.1177/004051750207200512.
  52. WANG, X., LU, D., JÖNSSON, L. J. HONG, F. Preparation of a PET-Hydrolyzing Lipase fromAspergillus oryzaeby the Addition of Bis(2-hydroxyethyl) Terephthalate to the Culture Medium and Enzymatic Modification of PET Fabrics. Engineering in Life Sciences, 2008, 8(3), 268‒276, doi: 10.1002/elsc.200700058.
  53. EBERL, Anita, HEUMANN, Sonja, BRUCKNER, Tina, ARAUJO, Rita, CAVACO‒PAULO, Artur, KAUFMANN, Franz, KROUTIL, Wolfgang, GUEBITZ, Georg M. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules. Journal of Biotechnology, 2009, 143(3), 207‒212, doi: 10.1016/j.jbiotec.2009.07.008.

47   Application of Cellulases in the Process of Finishing

……Kristina Šimić, Ivo Soljačić and Tanja Pušić  Abstract and References

University of Zagreb, Faculty of Textile Technology, Department of Textile Chemistry and Ecology, Prilaz baruna Filipovića 28a, HR-10 000 Zagreb, Croatia

Scientific Review

Received 06-2014 • Accepted 01-2015

Corresponding author:

Kristina Šimić, B.Sc.

Tel.: 00 385 148 77 353

E-mail: kristina.simic@ttf.hr

 

Abstract

Cellulases are enzymes that are used for surface modification of cellulosic materials primarily in finishing. It is multi-component enzymatic system which hydrolyzes cellulose chains, on the surface of the fibers, to glucose. With their application in finishing of textiles, surface fibres are removed and surface of treated textiles becomes smooth. The most important application is in the processing of denim providing special effects, without significant fabric loss of strength. As enzymes are effective over mild conditions of pH and temperatures and they are easy biodegradable.

Keywords: enzymes, cellulases, textile fibres, finishing

 

References

  1. Enzyme [accessible from a distance], [accessed 29.1.2014]. Available on World Wide Web: <http:// en.wikipedia.org/wiki/Enzyme>.
  2. Enzimi u detalje – 1. dio i 3. dio [accessible from a distance], [accessed 2.2.2014]. Available on World Wide Web: <http://www.building-body.com/enzimi-u-detalje-1.-dio.html>; <http://www.building-body.com/enzimi-u-detalje-1.-dio.html>; <http://www.building-body.com/enzimi-u-detalje-3.-dio.html>.
  3. Textile processing with enzymes. 1st Edition by A. Cavaco-Paulo and G. M. Gübitz. Cambridge England: Woodhead Publishing Limited in association with The Textile Institute, 2003, 1–12, <http://ir.nmu.org.ua/bitstream/handle/123456789/124253/e29299cb2473b75385e80e4ee10e4103.pdf?sequence=1>.
  4. PERAN, Jelena, PUŠIĆ, Tanja. Enzimi – bioinovatori u pranju rublja. Tekstil, 2013, 62(7–8), 329–337.
  5. KOKOL, Vanja, TEODOROVIČ, Simona, GOLOB, Vera. Biotehnologija v tekstilnih procesih plemenitenja 1.del: Encimi, industrija in okolje. Tekstilec, 2002, 45(5–6), 124–32.
  6. SCHMIDT, M. Enzymes in textile finishing. Melliand International, 1995, 2, 116–118.
  7. Cellulase [accessible from a distance], [accessed 29.1.2014]. Available on World Wide Web: <http://en.wikipedia.org/wiki/Cellulase>.
  8. SADHU, Sangrila, KANTI MAITI, Tushar. Cellulase Production by Bacteria: A review. British Microbiology Research Journal, 2013, 3(3), 235–258, doi: 10.9734/BMRJ/2013/2367.
  9. Enzymes in Industry: Production and Applications. 2ed Edition by A Wolfgang. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA, 2007, doi: 10.1002/3527602135.
  10. KOKOL, Vanja, GOLOB, Vera. Biotehnologija v tekstilnih procesih plemenitenja 2. del: Encimsko plemenitenje tekstilnih vlaken – tehnološki postopki. Tekstilec, 2002, 45(7–8), 195–200.
  11. SHAH, S. R. Chemistry and applications of cellulase in textile wet processing. Research Journal of Engineering Sciences, 2013, 2(7), 1–5.
  12. KOKOL, Vanja, GOLOB, Vera. Biotehnologija v tekstilnih procesih plemenitenja 3. del: Encimsko plemenitenje tekstilnih vlaken – tehnološki postopki. Tekstilec, 2002, 45(9–10), 262–269.
  13. Improve Environment | Bioscouring [accessible from a distance], [accessed 7.5.2014]. Available on World Wide Web: <http://improve.novozymes.com/Pages/default-new.aspx>.
  14. CAVACO-PAULO, Artur. Enzymatic processing with enzymes. 5th International conference AUTEX: book of proceeding, University of Maribor, Portorož, 2005, 425–428.
  15. AUTERINEN, Anna-Liisa. The impact of white biotechnology on modern textile processing. Colourage, 2008, 55(2), 85–88.
  16. BISCHOF VUKUŠIĆ, Sandra, SOLJAČIĆ, Ivo, KATOVIĆ, Drago. Enzimi u oplemenjivanju i pranju tekstila. Tekstil, 1994, 43(3), 136–143.
  17. HEINE, Elisabeth, HÖCKER, Hartwig. Enzyme treatments for wool and cotton. Rev. Prog. Coloration, 1995, 25(1), 57–70, doi: 10.1111/j.1478-4408.1995.tb00104.x.
  18. PEDERSON, G. L., SCREWS, G. A., CEDRONI, D. M. Biopolishing of Cellulosic Fabrics. Canadian Textile Journal, 1992, 109, 31–35.
  19. ĐORĐEVIĆ, Dragan, NOVAKOVIĆ, Milan, ĐORĐEVIĆ, Suzana. Enzimi u tekstilnoj industriji. Edited by M. Stanković. Leskovac : Tehnološki fakultet u Leskovcu, 2010, pp. 70–80.
  20. SANAP, Rajendra. Role of Enzymes in Textile Wet-Processing. Bangladesh Textile Today, 2010, 5, 53–58.
  21. LIU, Jim, OTTO, Eric, LANGE, Niels, HUSAIN, Philip, CONDON, Brian, LUND, Henrik. Selecting Cellulases for Bio-Polishing Based on Enzyme Selectivity and Process Conditions. Textile Chemist & Colorist & American Dyestuff Reporter, 2000, 32(5), 30–36.
  22. ČUNKO, Ružica, ANDRASSY, Maja. Vlakna, Zagreb, Udžbenici Sveučilišta u Zagrebu, 2005, p. 195–224.
  23. BIO-POLISHING – Avco chem.org [accessible from a distance], [accessed 7.5.2014]. Available on World Wide Web: <http://www.avcochem.org/english/CategoryIndex.aspx?Category=5>.
  24. LJAPČEVA, Kostadinka, MANGOVSKA, Biljana. Encimatsko poliranje tkanina od Tencel vlakana. Tekstil, 1999, 48(10), 493–497.
  25. PERIYASAMY, Aravin PrinceKHANUM, Rina. Effect of Fibrillation on Pilling Tendency of Lyocell Fibre. Bangladesh Textile Today, 2012, 4, 31–39.
  26. MANGOVSKA, Biljana, FILIPOV, Vencislav, JORDANOV, Igor. Encimatski postupci oplemenjivanja odjeće od Liocel vlakana. Tekstil, 2002, 51(3), 122–127.
  27. GANDHI, K, BURKINSHAW, S. M, TAYLOR, J. M, COLLINS, G. W. A Novel Route for Obtaining a “Peach Skin Effect” on Lyocell and its Blends. American Association of Textile Chemists and Colorists2(4), 2002, 48–52.
  28. BUNIĆ, Željko. Utjecaj postupaka oplemenjivanja na promjene fizikalno-mehaničkih svojstava džins odjevnih predmeta. Tekstil, 1992, 41(3), 142–150.
  29. MOJSOV, Kiro. Application of enzymes in textile industry: A Review. 2ed International Congress Engineering, Ecology and Materials in the Processing Industry: book of proceeding, Jahorina, 2011, 230–239.
  30. ANDREAUS, Jurgen, CAMPOS, Rui, GUBITZ, Georg, CAVACO-PAULO, Artur. Influence of Cellulases on Indigo Backstaining. Textile Research Journal, 2000, 70(7), 628–632, doi: 10.1177/004051750007000711.
  31. KLAHORST, Suanne, KUMAR, Akhil, MULLINS, M.M.. Optimizing the use of cellulase enzymes. Textile Chemist & Colorist., 1994, 26(2), 13–18.
  32. ROSCH, Herbert. Jeans – modri fenomen. Tekstilec, 2001, 44(1–2), 24–31.
  33. RAMAKRISHNAN, Anish, RAHMAN, Safikur, MALA, Mohammad, Rao. Application of Cellulases From an Alkalothermophilic Thermomonospora sp. in Biopolishing of Denims. Biotechnology and Bioengineering, 2006, 96(1), 48–56, doi: 10.1002/bit.21175.
  34. David Rigby Associates Management Consultants [accessible from a distance], BYRNE, Chris. Biotechnology in textiles [accessed 7.5.2014]. Available on World Wide Web: <http://www.davidrigbyassociates.co.uk/DRA%20WEBSITE%2003/assets/Biotechnology.pdf>.
  35. DEKANIĆ, Tihana, SOLJAČIĆ, Ivo, PUŠIĆ, Tanja. Oplemenjivanje džins odjeće – novosti. Tekstil, 2008, 57(5), 226–242.
  36. YOON, Mee-Young, McDONALD, Hugh, CHU, Keren, GARRATT, Clare. Protease, A new tool for denim washing. Textile Chemist and Colorist & American Dyestuff Reporter, 2000, 32(5), 25–29.
  37. ROSHAN, Paul. Enzymatic treatment as an alternative to carbonization of disperse/reactive dyed polyester – cotton blends. Indian Journal of Fibre & Textile Research, 2000, 25(1), 65–68.
  38. What Is Brasso Fabric? | eHow [accessible from a distance], [accessed 14.3.2014]. Available on World Wide Web: <http://www.ehow.com/fashion/>.