CONTENTS

 

SCIENTIFIC ARTICLES

264     Elastic Performance Coefficient and Recovery of Modified Polyester/Polyvinyl Alcohol Ring Spun Yarn

………..• Pawan Kumar, Sujit Kumar Sinha and Subrata Ghosh Abstract and references

 

Department of Textile Technology, National Institute of Technology, Jalandhar-144011, Punjab, India

Original Scientific Article

Received 10-2014 • Accepted 11-2014

Corresponding author:

PhD Sujit Kumar Sinha

E-mail: sinhask@nitj.ac.in

 

Abstract

The structural modification of yarn is opening up new fields of application. In the present study, the structure of polyester/polyvinyl alcohol (PVAL) blended ring spun yarns was modified with a dissolution of PVAL, while the yarns were prepared using various percentage of the PVAL fibre. The elastic recovery and elastic performance coefficient (EPC) were measured before and after the dissolution of PVAL for a comparative assessment. Fibre fineness and twist multiplier were also selectively altered to study the effect. The experiments were carried out to study the elastic recovery at 2% and 4% extension, while EPC was calculated using 30% and 50% of breaking load of respective yarns. The t-test result confirmed some significant difference in EPC and recovery behaviour of the yarns on the modification through the removal of PVAL. Fibre fineness and applied twist were found to influence the behaviour. Modified yarns were found to exhibit improved elastic recovery properties.

Keywords: elastic recovery, elastic performance coefficient, polyester and PVAL fibres, ring spun yarn

References

  1. Structural mechanics of fibres, yarns and fabrics. Edited by J. W. S. Hearle, Grosberg, P., Backer, Stanley. New York : John Wiley and Sons Inc., 1969, 175−207.
  2. PLATT, M. Milton. Mechanics of elastic performance of textile materials. Textile Research Journal, 1950, 20(1), 1‒15.
  3. The structure of yarn. Edited by Witold Žurek. Warsaw : Foreign scientific publications department of the national centre for scientific, technical and economic information, 1975, 175‒178.
  4. SUSICH, George, BACKER, Stanley. Tensile recovery behaviour of textile fibers. Textile Research Journal, 1951, 21(7), 482‒509, doi: 10.1177/004051755102100704.
  5. Physical properties of textile fibres 8th edition Edited by J. W. S. Hearle, W. Morton, W. E. Cambridge. England : CRC Press, Woodhead Publishing, 2008, 338‒347.
  6. HAMBURGER, J. Walter. Mechanics of elastic performance of textile materials: Part I. Development of an elastic performance coefficient in tension. Textile Research Journal, 1948, 18(2), 102‒113, doi: 10.1177/004051754801800204.
  7. HAMBURGER, J. Walter. Mechanics of elastic performance of textile materials: Part II The application of sonic techniques to the investigation of the effect of viscoelastic behaviour upon stress-strain relationship in certain high polymers. Textile research Journal, 1948, 18(12), 705‒743, doi: 10.1177/004051754801801201.
  8. SETT, S. K., MUKHERJEE, A., SUR, D. Tensile characteristics of rotor and friction spun jute blended yarn. Textile Research Journal, 2000, 70(8), 723‒728, doi: 10.1177/004051750007000810.
  9. CHATTOPADHYAY, R., SINHA, S. K. Studies on structural integrity of polyester –cotton friction spun yarn by cyclic extension test. Fibres and Polymers, 2011, 12(2), 268‒274, doi: 10.1007/s12221-011-0268-0.
  10. TYAGI, G. K., GOYAL, A., PATNAIK, A. Elastic recovery properties of polyester jet-spun yarns. Indian Journal of Fibre and Textile Research, 2002, 352‒357.
  11. TYAGI, G. K., SHARMA, Dhirendra. Performance and low-stress characteristics of polyester-cotton MVS yarns. Indian Journal of Fibre and Textile Research29, 2004, 301‒307.
  12. TYAGI, G. K., GOYAL, A., SINGH, A. Effect of add-on finish and process variables on recovery properties of jet-spun polyester yarns. Indian Journal of Fibre and Textile Research, 2004, 29, 44‒48.
  13. GUTHRIE, J. C., NORMAN, S. Measurement of the elastic recovery of viscose rayon filaments. Journal of the Textile Institute, 1961, 52(11), 503‒512, doi: 10.1080/19447016108688590.
  14. TYAGI, G. K., GOYAL, A., Chattopadhyay, R. Low stress and recovery characteristics of tencel blended ring, rotor and MJS yarns. Indian Journal of Fibre and Textile Research, 2013, 38, 331‒339.
  15. MANICH, M. Albert, DE CASTELLER, M. D. Elastic recovery and inverse relaxation of polyester staple fibre rotor spun yarns. Textile Research Journal, 1992, 62(4), 196‒200, doi: 10.1177/004051759206200403.
  16. Standard test method for elastic properties of textile fibres. ASTM, 1774‒94, 455‒459.
  17. HAMBURGER, J. Walter, PLATT, M. Milton, MORGAN, M. Henry. Mechanics of elastic performance of textile materials: Part X Some aspects of elastic behaviour at low strains. Textile Research Journal, 1952, 22(11), 695‒725, doi: 10.1177/004051755202201101.
  18. PLATT, M. Milton. Mechanics of elastic performance of textile materials: Part IV Some aspects of stress analysis of textile structures-staple fibre yarns. Textile Research Journal, 1950, 20(8), 518‒538, doi: 10.1177/004051755002000801.
  19. PLATT, M. Milton. Mechanics of elastic performance of textile materials: Part VI Influence of twist on modulus of elasticity. Textile Research Journal, 1950, 20(10), 665‒667, doi: 10.1177/004051755002001001.
  20. HAMBURGER, J. Walter, PLATT, M. Milton. An engineering approach to the analysis and design of textile structures. Journal of the Textile Institute, 1953, 44(8), 475‒512, doi: 10.1080/19447015308687858.

 


 

273     Creating Superhydrophobic and Oleophobic Cotton Fabric Dyed with Reactive Dyes

………..• Marija Gorjanc, Brigita Tomšič, Tina Mandelj, Rahela Kurent, Kristina Zdovc, Katarina Drevenšek,

………..Nina Pajsar, Mateja Kert in Barbara Simončič Abstract and references

Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, Snežniška 5, 1000 Ljubljana

 

Original Scientific Article

Received 9-2014 • Accepted 10-2014

Corresponding author:

Prof. dr. Barbara Simončič

E-mail: barbara.simoncic@ntf.uni-lj.si

 

Abstract

In the research, the influence of dyeing with three reactive dyes Avitera SE, i.e. yellow, red and blue, on the functional properties of cotton fabrics finished with SiO2 nanoparticles, hydro- and oleophobic finish (FAS) and the combination of both (SiO2 + FAS) was studied. At the same time, the influence of applied finishes on the colour change of dyed cotton fabrics was studied as well. The presence of different finishes on cotton was studied using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The hydro- and oleophobic properties of undyed and dyed cotton fabrics before and after washing were evaluated by measuring static contact angles of water and n-hexadecane, sliding water angles and estimation of oleophobicity according to AATCC 118-1966 T. The colorimetric properties of samples were studied before and after the application of finishes, after the washing and artificial illumination. The presence of finishes on cotton was confirmed with the FTIR and SEM results. Superhydrophobic properties were obtained in the case of all studied samples and were not affected by previous dyeing. Despite the application of SiO2 nanoparticles, the samples did not obtain self-cleaning properties. Application of finishes led to oil repellency, which even slightly increased on the previously dyed samples. The finishes showed good washing resistance. The colour of undyed and dyed samples was strongly influenced by the presence of finishes. The FAS finish caused the darkening and yellowing of samples, while the SiO2 finish influenced the colour change to blue, yellow and red, respectively. The dyed and finished samples had poor light fastness, which was visible from the colour differences results.

Keywords: reactive dyes, SiO2 nanoparticles, FAS, sol-gel, lotus effect, oleophobicity

 

References

  1. SONG, Junlong, ROJAS, Orlando Jose. Approaching super-hydrophobicity from cellulosic materials: A Review. Nordic pulp & paper research journal, 2013, 28(2), 216-238, doi: 10.3183/NPPRJ-2013-28-02-p216-238.
  2. WANG, Shing Dar, LIN, Bai Jun, HSIEH, Chien Cheng, LIN, Chao Chieh. Application of superhydrophobic sol gel on canvas. Applied surface science, 2014, 307, 101-108, doi: 10.1016/j.apsusc.2014.03.173.
  3. HEINONEN, Saara, HUTTUNEN-SAARIVIRTA, Elina, NIKKANEN, Juha-Pekka, RAULIO, Mari, PRIHA, Outi, LAAKSO, Jarmo, STORGARDS, Erna, LEVANEN, Erkki. Antibacterial properties and chemical stability of superhydrophobic silver-containing surface produced by sol-gel route. Colloids and surfaces a-physicochemical and engineering aspects, 2014, 453, 149-161, doi: 10.1016/j.colsurfa.2014.04.037.
  4. VASILJEVIĆ, Jelena, TOMŠIČ, Brigita, JERMAN, Ivan, OREL, Boris, JAKŠA, Gregor, KOVAČ Janez, SIMONČIČ, Barbara. Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibres with improved ice-releasing properties and passive antibacterial activity prepared via the sol-gel method. Journal of sol-gel science and technology, 2014, 70(3), 385-399, doi: 10.1007/s10971-014-3294-8.
  5. HOEFNAGELS, H. F., WU, D., de WITH, G., MING, W. Biomimetic superhydrophobic and highly oleophobic cotton textiles. Langmuir, 2007, 23(26),13158-13163, doi: 10.1021/la702174x.
  6. GHOSH, Nilmoni, SINGH, Amit Vikram, VAIDYA, Ashish Anant. Water-based layer-by-layer surface chemical modification of biomimetic materials: oil repellency. ACS Applied materials & interfaces, 2013, 5(18), 8869-8874, doi: 10.1021/am401766z.
  7. LIU, Quanyong, ZHANG, Liqun, JIANG, Lei. Biomimetic preparation of elastomeric fibers with micro/nano structures on the surfaces. Progress in natural science-Materials international, 2012, 22(5), 493-501, doi: 10.1016/j.pnsc.2012.08.002.
  8. SAS, Iurii, GORGA, Russell E., JOINES, Jeff A., THONEY, Kristin A. Literature review on superhydrophobic self-cleaning surfaces produced by electrospinning. Journal of polymer science part B – Polymer physics, 2012, 50(12), 824-845, doi: 10.1002/polb.23070.
  9. SIMONČIČ, Barbara, TOMŠIČ, Brigita, OREL, Boris, JERMAN, Ivan. Tekstilija kot navdih iz narave. Tekstilec, 2010, 53(10/12), 294-306.
  10. VASILJEVIĆ, Jelena, GORJANC, Marija, TOMŠIČ, Brigita, OREL, Boris, JERMAN, Ivan, MOZETIČ, Miran, VESEL, Alenka, SIMONČIČ, Barbara. The surface modification of cellulose fibres to create super-hydrophobic, oleophobic and self-cleaning properties. Cellulose, 2013, 20(1), 277-289, doi: 10.1007/s10570-012-9812-3.
  11. GORJANC, Marija, JAZBEC, Katja, MALOPRAV, Anja, GODEC, Petra, FORTE TAVČER, Petra, SIMONČIČ, Barbara. Oblikovanje lotosovega efekta« na bombažni tkanini s plazmo, encimi in apreturo sol-gel. Tekstilec, 2012, 55(3), 206-214.
  12. OREL, Boris, JERMAN, Ivan, VILČNIK, Andrej, TOMŠIČ, Brigita, SIMONČIČ, Barbara. Sol-gel postopki kot izziv pri proizvodnji tekstilij = Sol-gel processes as a challenge in textile production. V Zbornik prispevkov : 38. simpozij o novostih v tekstilstvu in 3. simpozij o novostih v grafiki, Ljubljana, 21. junij 2007. SIMONČIČ, Barbara (ur.), HLADNIK, Aleš (ur.), JAVORŠEK, Dejana (ur.). Ljubljana : Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, 2007, str. 3–15.
  13. YEN, Ming-Shien, KUO, Mu-Cheng and CHEN, Chien-Wen. Characterisation of sol-gel based hybrid silicon dioxide/heteroarylthiazole dyes on polyamide fabric. Coloration technology, 2012, 128(4), 276–282, doi: 10.1111/j.1478-4408.2012.00375.x.
  14. VERONOVSKI, Nika, HRIBERNIK, Silvo, SFILIGOJ SMOLE, Majda. Funkcionalizacija tekstilij z nano TiO2 in SiO2 prevlekami. Tekstilec, 2008, 51(10-12), 300-318.
  15. MAHLTIG, Boris, KNITTEL, Dierk, SCHOLLMEYER, E, BOTTCHER, H. Incorporation of triarylmethane dyes into sol-gel matrices deposited on textiles. Journal of sol-gel science and technology, 2004, 31(1-3), 293-297, doi: 10.1023/B:JSST.0000048006.70681.7c.
  16. AĶIT, Aysun Cireli, ONAR, Nurhan. Leaching and fastness behavior of cotton fabrics dyed with different type of dyes using sol-gel process. Journal of applied polymer science, 2008, 109(1), 97–105, doi: 10.1002/app.27284.
  17. KISSA, E. Repellent finishes. V Handbook of fiber science and technology: Volume II, Chemical processing of fibers and fabrics: Functional finishes, Part B. New York : Marcel Dekker, 1984, 144–204.
  18. SCHRAMM, Christian, RINDERER, Beate. Dyeing and DP treatment of sol-gel pre-treated cotton fabrics. Fibers and polymers, 2011, 12(2), 226-232, doi: 10.1007/s12221-011-0226-x.
  19. XU, Lihui, CAI, Zaisheng, SHEN, Yong, WANG, Liming, DING, Ying. Facile preparation of superhydrophobic polyester surfaces with fluoropolymer/SiO2 nanocomposites based on vinyl nanosilica hydrosols. Journal of applied polymer science, 2014, 131(11), art. no. 40340, doi: 10.1002/app.40340.
  20. YIN, Yunjie, WANG, Chaoxia. Sol-gel synthesis and characterizations of organically modified silica coatings on knitted cellulose for fixation applications. Progress in organic coatings, 2012, 73(1), 14-18, doi: 10.1016/j.porgcoat.2011.08.013.
  21. GORJANC, Marija in GORENŠEK Marija. Vpliv barvanja bombaža z reaktivnim barvilom na adsorpcijo srebra, Tekstilec, 2011, 54(10-12), 228-237.
  22. HOU, Aiqin, YU, Yanhong, CHEN, Huawei. Uniform dispersion of silica nanoparticles on dyed cellulose surface by sol-gel method. Carbohydrate polymers, 2010, 79(3), 578-583, doi: 10.1016/j.carbpol.2009.09.004.
  23. FARAHMANDJOU, Majid, KHALILI, P. Study of nano SiO2/TiO2 superhydrophobic self-cleaning surface produced by sol-gel. Australian journal of basic and applied sciences, 2013, 7(6), 462-465.
  24. SIMONČIČ, Barbara, HADŽIĆ, Samira, VASILJEVIĆ, Jelena, ČERNE, Lidija, TOMŠIČ, Brigita, JERMAN, Ivan, OREL, Boris, MEDVED, Jožef. Tailoring of multifunctional cellulose fibres with “lotus effect” and flame retardant properties. Cellulose, 2014, 21(1), 595-605, doi: 10.1007/s10570-013-0103-4.
  25. OWENS, Frank J., POOLE, Charles P. The physics and chemistry of nanosolids. Hoboken, N. J. : Wiley-Interscience, cop., 2008, 539 str.
  26. JELER, Slava, KUMAR, Marko, TIŠLER, Vesna, BOŽIČ, Dušan. Interdisciplinarnost barve. Del 1.: V znanosti. 2001, Maribor : DKS, 384 str.

 


 

283     Influence of Antimicrobial Finishing on Colour and Colour Fastness of Textiles from Natural Fibres

………..• Eva Ilec1, Aleš Hladnik2 in Barbara Simončič2 Abstract and references

1Pokrajinski muzej Ptuj-Ormož, Muzejski trg 1, 2250 Ptuj

2Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, Snežniška 5, 1000 Ljubljana

 

Original Scientific Article

Received 9-2014 • Accepted 10-2014

Corresponding author:

Prof. dr. Barbara Simončič

E-mail: barbara.simoncic@ntf.uni-lj.si

 

Abstract

The aim of the research was to examine the influence of the antimicrobial sol-gel finishing based on dimethyl-tetradecil-[3(trimethoxysilyl)propyl] ammonium chloride (Si-QAC ) on the colour and colour fastness of cotton (CO), silk (SE) and wool (WO) fabrics, which are mostly used in the conservation-restoration of historic textiles. The fabric CO was dyed with direct and reactive dyes, and with indigo, the fabric SE was dyed with the metal complex dyes and the fabric WO with the acid dyes. Yellow, red and blue colours were used. The Si-QAC agent was applied in two increasing concentrations. The dyed non-finished and finished samples of fabrics CO, SE and WO were artificially illuminated in Xenotest, and repeatedly washed in Launder-Ometer. Colour differences were determined between illuminated and non-illuminated as well as washed and non-washed samples and consequently statistically evaluated with the multifactor analysis of variance, ANOVA. The results show that the presence of the coating resulted in the colour change of all studied samples. The coating presence significantly impaired the lightfastness of dyeings, but did not significantly affect the washing fastness of dyeings. Colour fastness was importantly influenced by the dye structure.

Keywords: natural fibres, antimicrobial finishing, influence of the coating on colour, washing fastness of dyeings, light fastness of dyeings

 

References

  1. TIMAR-BALAZSY, Agnes, EASTOP, Dinah. Chemical principles of textile conservation (Routlege Series in conservation and museology). New York : Routlege, 2011, 443 str.
  2. LENNARD, Frances, EWER, Patricia. Textile conservation : advances in practise. Glasgow : Elsevier, 2010, 299 str.
  3. SIMONČIČ, Barbara, TOMŠIČ, Brigita. Structures of novel antimicrobial agents for textiles: a review. Textile Research Journal, 2010, 80(16), 1721–1737, doi: 10.1177/0040517510363193.
  4. SONG, Le, BANEY, Ronald H. Antibacterial evaluation of cotton textile treated by trialkoxysilane compounds with antimicrobial moiety. Textile Research Journal, 2011, 81(5), 504–511, doi: 10.1177/0040517510380776.
  5. MAHLTIG, Boris, FIEDLER, Dirk, FISCHER, Anja, SIMON, Paul. Antimicrobial coatings on textiles-modification of sol-gel layers with organic and inorganic biocides. Journal of sol-gel science and technology, 2010, 55(3), 269–277, doi: 10.1007/s10971-010-2245-2.
  6. LUNDIN, Jeffrey G., CONESKI, Peter N., FULMER, Preston A., WYNNE, James H. Relationship between surface concentration of amphiphilic quaternary ammonium biocides in electrospun polymer fibers and biocidal activity. Reactive and functional polymers, 2014, 77, 39–46, doi: 10.1016/j.reactfunctpolym.2014.02.004.
  7. TOMŠIČ, Brigita, SIMONČIČ, Barbara, OREL, Boris, ŽERJAV, Metka, SCHROERS, Hans, SIMONČIČ, Andrej, SAMARDŽIJA, Zoran. Antimicrobial activity of AgCl embedded in a silica matrix on cotton fabric. Carbohydrate polymers, 2009, 75(4), 618–626, doi: 10.1016/j.carbpol.2008.09.013.
  8. TOMŠIČ, Brigita, ILEC, Eva, ŽERJAV, Metka, HLADNIK, Aleš, SIMONČIČ, Andrej, SIMONČIČ, Barbara. Characterisation and functional properties of antimicrobial bio-barriers formed by natural fibres. Colloids and surfaces. B, Biointerfaces, 2014, 122, 72−78, doi: 10.1016/j.colsurfb.2014.06.047.
  9. CALDEIRA, Estela, PISKIN, Erhan, GRANADEIRO, Luiza, SILVA, Filomena, GOUVEIA, Isabel C. Biofunctionalization of cellulosic fibres with L-cysteine: Assessment of antibacterial properties and mechanism of action against Staphylococcus aureus and Klebsiella pneumoniae. Journal of biotechnology, 2013, 168(4), 426–435, doi: 10.1016/j.jbiotec.2013.10.021.
  10. LIU, Bo, WANG, Xiaoying, PANG, Chunsheng, LUO, Jiwen, LUO, Yuqiong, SUN, Runcang. Preparation and antimicrobial property of chitosan oligosaccharide derivative/rectorite nanocomposite. Carbohydrate polymers, 2013, 92(2), 1078–1085, doi: 10.1016/j.carbpol.2012.10.060.
  11. TOMŠIČ, Brigita, KLEMENČIČ, Danijela, SIMONČIČ, Barbara, OREL, Boris. Influence of antimicrobial finishes on the biodeterioration of cotton and cotton/polyester fabrics: Leaching versus bio-barrier formation. Polymer degradation and stability, 2011, 96(7), 1286–1296, doi: 10.1016/j.polymdegradstab.2011.04.004.
  12. GAO, Yuan, CRANSTON, Robin. Recent advances in antimicrobial treatments of textile. Textile Research Journal, 2008, vol 78(1), 60–72, doi: 10.1177/0040517507082332.
  13. GANESAN, P., RAMACHANDRAN, T., KARTHIK, T., ANAND, V. S. P, GOWTHAMAN, T. Process optimization of Aerva lanata extract treated textile material for microbial resistance in healthcare textiles. Fibers and polymers, 2013, 14(10), 1663–1673, doi: 10.1007/s12221-013-1663-5.
  14. SIMONČIČ, Barbara, TOMŠIČ, Brigita, ČERNE, Lidija, OREL, Boris, JERMAN, Ivan, KOVAČ, Janez, ŽERJAV, Metka, SIMONČIČ, Andrej. Multifunctional water and oil repellent and antimicrobial properties of finished cotton: influence of sol-gel finishing procedure. Journal of sol-gel science and technology, 2012, 61(2), 340–354, doi: 10.1007/s10971-011-2633-2.
  15. EL OLA, Samih Mohamed Abo, KOTEK, Richard, WHITE, W. Curtis, REEVE, John Allan, HAUSER, Peter, KIM, Joon Ho. Unusual polymerization of 3-(trimethoxysilyl)-propyldimethyloctadecyl ammonium chloride on PET substrates. Polymer, 2004, 45(10), 3215–3225, doi: 10.1016/j.polymer.2004.02.041.
  16. PERŠIN, Zdenka, MAVER, Uroš, PIVEC, Tanja, MAVER, Tina, VESEL, Alenka, MOZETIČ, Miran, STANA-KLEINSCHEK, Karin. Novel cellulose based materials for safe and efficient wound treatment. Carbohydrate polymers, 2014, 100(Special Issue), 55–64, doi: 10.1016/j.carbpol.2013.03.082.
  17. KLEMENČIČ, Danijela, MUHA, Petra, KLEPACKA, Wioleta, TOMŠIČ, Brigita, DEMŠAR, Andrej, ANEJA, P. Arun, ŽAGAR, Kristina, SIMONČIČ, Barbara. Influence of preparation procedure of colloidal silver solution on properties of fibres from polylactic acid. Tekstilec, 2013, 56(4), 302–311.
  18. SHASTRI, P. Jayagouri, RUPANI, G. Meeta, JAIN, L. Roonal. Antimicrobial activity of nanosilver-coated socks fabrics against foot pathogens. Journal of the textile institute. 2012, 103(11), 1234–1243, doi: 10.1080/00405000.2012.675680.
  19. KLEMENČIČ, Danijela, TOMŠIČ, Brigita, KOVAČ, Franci, ŽERJAV, Metka, SIMONČIČ, Andrej, SIMONČIČ, Barbara. Preparation of novel fibre-silica-Ag composites: the influence of fibre structure on sorption capacity and antimicrobial activity. Journal of Materials Science, 2014, 49(10), 3785–3794, doi: 10.1007/s10853-014-8090-x.
  20. GORJANC, Marija, BUKOŠEK, Vili, GORENŠEK, Marija, MOZETIČ, Miran. CF4 plasma and silver functionalized cotton. Textile Research Journal, 2010, 80(20), 2204–2213, doi: 10.1177/0040517510376268.
  21. GORENŠEK, Marija, GORJANC, Marija, BUKOŠEK, Vili, KOVAČ, Janez, JOVANČIČ, Petar, MIHAILOVIČ, Darka. Functionalization of PET fabrics by corona and nano silver. Textile Research Journal, 2010, 80(3), 253–262, doi: 10.1177/0040517509105275.
  22. YAZDANSHENAS, E. Mohammad, SHATERI-KHALILABAD, Mohammad. In situ synthesis of silver nanoparticles on alkali-treated cotton fabrics. Journal of industrial textiles, 2013, 42(4), 459–474, doi: 10.1177/1528083712444297.
  23. FRAS ZEMLJIČ, Lidija, PERŠIN, Zdenka, STENIUS, Per. Improvement of chitosan adsorption onto cellulosic fabrics by plasma treatment. Biomacromolecules, 2009, 10, 1181–1187, doi: 10.1021/bm801483s.
  24. KHALIL-ABAD, Mohammad Shateri, YAZDANSHENAS, Mohammad Esmail, NATEGHI, Mohammad Reza. Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose, 2009, 16, 1147–1157, doi: 10.1007/s10570-009-9351-8.
  25. QU, Li-Jun, GUO, Xiao-Qing, TIAN, Ming-Wei, LU, Ang. Antimicrobial fibers based on chitosan and polyvinyl-alcohol. Fibers and polymers, 2014, 15(7), 1357–1363, doi: 10.1007/s12221-014-1357-7.
  26. EMAM, E. Hossam, MOWAFI, Salwa, MASHALY, M. Hamada, REHAN, Mohamed. Production of antibacterial colored viscose fibers using in situ prepared spherical Ag nanoparticles. Carbohydrate polymers, 2014, 110, 148–155, doi: 10.1016/j.carbpol.2014.03.082.
  27. RAD, Panthea Sepahi, MONTAZER, Majid, RAHIMI, Mohammad Karim. Simultaneous antimicrobial and dyeing of wool: A facial method. Journal of applied polymer science, 2011, 122(2), 1405–1411, doi: 10.1002/app.34089.
  28. ILIĆ, Vesna, SAPONJIĆ, Zoran, VODNIK, Vesna, POTKONJAK, B., JOVANČIĆ, P., NEDELJKOVIĆ, Jovan, RADETIĆ, Maja. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydrate polymers, 2009, 78(3), 564–569, doi: 10.1016/j.carbpol.2009.05.015.
  29. MONTAZER, Majid, ALIMOHAMMADI, Farbod, SHAMEI, Ali, RAHIMI, Mohammad Karim. Durable antibacterial and cross–linking cotton with colloidal silver nanoparticles and butane tetracarboxylic acid without yellowing. Colloids and Surfaces B, 2012, 89, 196–202, doi: 10.1016/j.colsurfb.2011.09.015.
  30. SCHINDLER, W. D., HAUSER, P. J. Chemical finishing of textiles. Cambridge: Woodhead Publishing, 2004, str. 165–174.
  31. GORENŠEK, Marija, MEDEN, Anton, GORJANC, Marija, RECELJ, Petra. Parameters influencing dyeability of cotton warp at dip-dyeing for jeans. Textile Research Journal, 2008, 78(6), 524–531, doi: 10.1177/0040517507082957.
  32. Backup Information Sanitized® T 99-19 »Hygiene protection makes you feel good and comfortable«, Marketing/CorporateIdentity/Backup/Textil/T 99-19 en indd. Dok Nr. T5302E 02, str. 1–14.
  33. JELER, Slava, KUMAR, Marko, TIŠLER, Vesna, BOŽIČ, Dušan. Interdisciplinarsnost barve. 1. del: V znanosti. Maribor: DKS, 2001, str. 223–224.

 


 

300     Review of Computer Models for Fabric Simulation • Simona Jevšnik1, Fatma Kalaoğlu1, Sena Terliksiz1 and

………..Jure Purgaj2 Abstract and references

1Istanbul Technical University, Textile Technologies and Design Faculty, Istanbul, Inon. Cad. No. 65, 34437, Turkey

2Pädagogische Hochschule Wien, Institut für Berufsbildung, Mode- und Designpädagogik, Grenzakcerstraße 18, A-1100 Wien, Austria

 

Scientific Review

Received 10-2014 • Accepted 11-2014

Corresponding author:

Assoc. Prof. D.Sc. Simona Jevšnik

E-mail: simonajevsnik@gmail.com

Abstract

3D computer technologies are closely linked to all textile fields ranging from the designing and constructing of fabrics and garments, virtual human body presentations, interactive virtual prototyping to virtual fashion shows and e-trading. This paper offers a review of frequently used methods for fabric simulation. The review is divided into two parts. The first part of the paper comprises currently used techniques, followed by the presentation of basic terms and fabric parameters required for fabric simulations. The second part discusses the approaches and methods for constructing computer models of fabrics. In conclusion, the list of used techniques and parameters for defining a computer fabric model are presented together with given future guidance.

Keywords: CAD/CAM in textiles, fabric simulations, fabric models

 

References

  1. HOUSE, H. Donald, BREEN, E. David. Cloth Modeling and Animation. Massachusetts : A. K. Peters Natick, Ltd. Natick, 2000, 344.
  2. HU, Jinlian. Computer technology for textiles and apparel. Cambridge : Woodhead Publishing Series in Textiles: Number 121, 2011, 392.
  3. VOLINO, Pascal, MAGNENAT –THALMANN, Nadia. Virtual clothing, Theory and practise. Berlin : Springer-Verlag, 2000, 283.
  4. JEVŠNIK, Simona, KALAOĞLU, Fatma, ERYURUK, Selin Hanife, BIZJAK, Matejka, STJEPANOVIČ, Zoran. Evaluation of garment fit model using AHP. Fibres & Textiles in Eastern Europe2015, 23, 2(110) in print.
  5. STJEPANOVİČ, Zoran. IMB 2006 – Novelties in the Field of the 3D Virtual Prototyping. Tekstilec, 2006, 49(7/9), 117−121.
  6. JEVŠNIK, Simona, STJEPANOVIĆ, Zoran, CELCAR, Damjana. Virtual clothes´ simulations. In 1st International Conference I Love Inter/National Fashion : book of proceedings. Ljubljana, April 2−4, 2009, 67−74.
  7. VOLINO, Pascal, CORDIER, Frederic, MAGNENAT-THALMANN, Nadia. From early virtual garment simulation to interactive fashion design. Computer-Aided Design, 2005, 37, 593–608, doi: 10.1016/j.cad.2004.09.003.
  8. Gerbertechnology [online] [accessed 7.3.2014]. Available on World Wide Web: http://www.gerbertechnology.com.
  9. Lectra [online] [accessed 7.3.2014]. Available on World Wide Web: http://www.lectra.com.
  10. Assystbullmer [online] [accessed 7.3.2014]. Available on World Wide Web: http://assystbullmer.co.uk/.
  11. OptiTex [online] [accessed 7.3.2014]. Available on World Wide Web: http://www.optitex.com.
  12. Cloth modeling [online]. Textile terms and definitions [accessed 7.3.2014]. Available on World Wide Web: http://www.ttandd.org/.
  13. Textile [online]. Wikipedia : the free encyclopedia [accessed 7.3.2014]. Available on World Wide Web: http://en.wikipedia.org/wiki/Textile.
  14. CHITTARO, Luca, CORVAGLIA, Demis. 3D Cloth and Garment Simulation based on Web Technologies, Convegno Tecnico Scientifico, Torino, November 2003.
  15. The availability and capabilities of ‘Low-End’ virtual modelling (Prototyping) Products to enable designers and engineers to prove concept early in the design [online] [accessed 7.3.2014]. Available on World Wide Web: http://www.lboro.ac.uk/microsites/mechman/research/ipm-ktn/pdf/Technology_review/virtual-prototyping-early-in-the-design-cycle.pdf.
  16. WANG, Gary. Definition and Review of Virtual Prototyping, Journal of Computing and Information Science in Engineering, 2003, 2(3), 232−236, doi: 10.1115/1.1526508.
  17. HOUSE, H. Donald, BREEN, E. David, GETTO, H. Phillip. A Physically Based Particle Method of Woven Cloth. The Visual Computer, 1992, 8(5−6), 264−277, doi: 10.1007/BF01897114.
  18. COLLİER, Joan R., COLLIER, Billie J. Drape Prediction by Means of Finite Element Analysis. Journal of Textile Institute, 1991, 82(1), 96−107, doi: 10.1080/00405009108658741.
  19. JEVŠNIK, Simona. Predicting mechanical properties of fused panel. Fibres & textiles in Eastern Europe, 2000, 8(4), 54−56.
  20. CHEN, B., GOVİNDARAY, Muthu. A parametric Study of fabric drape. Textile research journal, 1996, 66(1), 17−24, doi: 10.1177/004051759606600103.
  21. TERZOPOULOS, Demetri, PLATT, John C., BARR, Alan H., FLEISCHER, Kurt. Elastically deformable models. In ACM Computer Graphics, SIGGRAPH’87 : book of proceedings. Anaheim, California, 1987, 21, 205−214.
  22. CHEN, Ming, TANG, Kai. A fully geometric approach for developable cloth deformation simulation. Visual Computer, 2010, 26, 853–863, doi: 10.1007/s00371-010-0467-5.
  23. CHEN, Bijian, GOVİNDARAY, Muthu. A Physically Based Model of Fabric Drape Using Flexible Shell Theory. Textile research journal, 1995, 65(6), 324−330, doi: 10.1177/004051759506500603.
  24. DE BOSS, A. The FAST System for Objective Measurement of Fabric Properties, Operation, Interpretation and Application. CSIRO Division of Wool Technology, Sydney, 1991.
  25. KAWABATA, Sueo. The Standardization and Analysis of Hand Evaluation. Osaka : Textile Machinery Society of Japan, 1980, 97.
  26. PEIRCE, F. T. The Handle of Cloth as Measurable Quantity. The Journal of the Textile Institute, 1930, 21(9), 377−416, doi: 10.1080/19447023008661529.
  27. DE JONG, S., POSTLE, R.: An Energy analysis of woven-fabric mechanics by mena of Optimal-control theory. Part I: Tensile properties. Journal of the Textile Institute, 1977, 68(11), 350−361, doi: 10.1080/00405007708631412.
  28. HEARLE, J. W. S., SHANAHAN W. J. An Energy Method for Calculations in Fabric Mechanics, Part I: Principles of the Method. Journal of the Textile Institute, 1978, 69(4), 81−91, doi: 10.1080/00405007808631425.
  29. KNOLL, A. L. The Geometry and Mechanics of the Plain-Weave Structure: A Comparison of the General Energy Method of Analysis and Previous Models. Journal of the Textile Institute, 1979, 70(5), 163−171.
  30. SHANAHAN, W. J. HEARLE, J. W. S. An Energy Method for Calculations in Fabric Mechanics, Part II: Examples of Application of the Method to Woven Fabrics. Journal of the Textile Institute, 1978, 69(4), 81−91, doi: 10.1080/00405007808631426.
  31. AMİRBAYAT, J., HEARLE, J. W. S. The Complex Buckling of Flexible Sheet Materials—Part II. Experimental Study of Three-Fold Buckling. International Journal of Mechanical Science, 1986, 28(6), 359−370, doi: 10.1016/0020-7403(86)90055-X.
  32. AMİRBAYAT, J., HEARLE, J.W.S. The Anatomy of Buckling of Textile Fabrics: Drape and Conformability. Journal of the Textile Institute, 1989, 80(1), 51−69, doi: 10.1080/00405008908659185.
  33. LY, Nhan G. A Model for Fabric Buckling in Shear. Textile Research Journal, 1985, 55, 744−749.
  34. KİLBY, W. F. Planar Stress-Strain Relationships in Woven Fabrics. Journal of the Textile Institute, 1963, 54 (1), 9−27, doi: 10.1080/19447026308659910.
  35. LLOYD, D. W., SHANAHAN, W. J., KONOPASEK, M. The Folding of Heavy Fabric Sheets. International Journal of Mechanical Science, 1978, 20(8), 521−527.
  36. JEVŠNIK, Simona. The Analysis of Drapability of Shell Fabric, Interlining and Fused Panel as Assembly Parts of a Garment : Doctoral Dissertation. Maribor, University of Maribor, 2002.
  37. GAN, L., LY N. G. STEVENS, G. P. A Study of fabric deformations using nonlinear finite elements. Textile research journal, 1995, 65(11), 660−668, doi: 10.1177/004051759506501106.
  38. WEIL, Jerry. The synthesis of cloth objects. In ACM Computer Graphics, the 13th annual conference on computer graphics and interactive techniques : book of proceedings. 1986, 49-53, doi: 10.1145/15922.15891.
  39. HİNG, N. Ng, GRİMSDALE, L. Richard. Computer Graphics Techniques for Modeling Cloth. Journal IEEE Computer Graphics and Application16(5), 1996, 28-41, doi: 10.1109/38.536273.
  40. TAİLLEFER, F. Mixed Modeling. In Compugraphics, 1st International conference on computational graphics and visualization techniques : book of proceedings. Sesimbra, Portugal, 1991, 467−478.
  41. HINDS, B. K., McCARTNEY, J. Interactive garment design. The Visual Computer, Springer-Verlag, 1990, 6(2), 53−61, doi: 10.1007/BF01901066.
  42. FEYMANN, Karl Richard. Modelling the appearance of cloth : Master thesis. Massachusetts Institute of Technology, 1986.
  43. MAGNENAT-THALMANN, Nadia, CORDIER, F., VOLINO, Pascal, KECKEISEN, Michael, KIMMERLE, Stefan, KLEIN, Reinhardt, MESETH, Jan. Simulation of Clothes for Real-time Applications. In “Interacting with Virtual Worlds”, 25th Annual Conference of the European Association for Computer Graphics : book of proceedings. Grenoble, 2004.
  44. VOLINO, Pascal, MAGNENAT-THALMANN, Nadia. Developing simulation techniques for an interactive clothing system. Virtual Systems and Multimedia : book of proceedings. Geneva, Switzerland, 1997, 109−118.
  45. VOLINO, Pascal, CORDIER, Frederic, MAGNENAT-THALMANN, Nadia. From early virtual garment simulation to interactive fashion design. Computer-Aided Design, 2005, 37, 593–608, doi: 10.1016/j.cad.2004.09.003.
  46. ZHANG, Dongliang, YUEN, M. F. Matthew. Cloth simulation using multilevel meshes. Computers & Graphics, 2001, 25, 383–389, doi: 10.1016/S0097-8493(01)00062-0.
  47. PROVOT, Xavier. Deformation constraints in a mass-spring model to describe rigid cloth behavior. Graphics Interface, 1995, 147−154.
  48. EBERHARDT, Bernhard, WEBER, Andreas, STRASSER, Wolfgang. A Fast, Flexible, Particle-System Model for Cloth Draping. IEEE Computer Graphics and Appli­cations, 1996, 16(5), 52−59, doi: 10.1109/38.536275.
  49. OKABE, Hidehiko, IMAOKA, Haruki, TOMİHA, Takako, NİWAYA, Haruo. Three-dimensional apparel CAD system. In Computer Graphic, SIGGRAPH’92 : book of proceedings. Chicago, 1992, 105−110.
  50. LI, Ling, DAMODARAN, Murali, GAY, K. L. Robert. A Quasi-Steady Force Model for Animating Cloth Motion. In IFIP International Conference on Computer Graphics : book of proceedings. North-Holland, Amsterdam, 1993, 357−363.
  51. GRÖLLER, Eduard, RAU, T. Rene, STRAßER, Wolfgang. Modeling textiles as three dimensional textures. In Eurographics Rendering Workshop 1996 : book of proceedings. Porto, Portugal : Springer-Verlag Vienna, June 1996, 205–214, doi: 10.1007/978-3-7091-7484-5_21.
  52. BARAFF, David, WITKIN, Andrew. Large steps in cloth simulation. In SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series ACM, ACM Press/ACM SIGGRAPH : book of proceedings. Orlando, 1998, 43–54.
  53. HU, J., CHEN, S., TENG, J. G. Numerical Drape Behaviour of Circular Fabric Sheets Over Circular Pedestal. Textile Research Journal, 2000, 70(7), 593−603.
  54. YU, D. K. C., KENNON, R. POTLURİ, P. Computer-Based 3D Modelling of the Drape of Woven Fabric. Strojniški vestnik, 1999, 677−684.
  55. RUDOMIN, J. Isaac. Simulating cloth using a mixed geometry-physical method : PhD Thesis. US, Department of Computer Science, University of Pennsylvania, 1990.
  56. KUNII, T. L., GOTODA, H. Modeling and animation of garment wrinkle formation processesComputer Animation’90 : book of proceedings. New York : Springer-Verlag, 1990131−146.
  57. TSOPELAS, Nikitas. Animating the crumpling behavior of garmentsIn 2nd Eurographics Workshop on Animation and Simulation : book of proceedings, 1991, 11−24.
  58. PABST, Simon, KRZYWINSKI, Sybille, SCHENK, Andrea, THOMASZEWSKI, Bernhard. Seams and bending in cloth simulation. In Workshop in virtual reality interactions and physical simulation, VRIPHYS. Grenoble, France, 2008, 31–38.
  59. WONG, T. H., LEACH, G. ZAMBETTA, F. Modelling bending behaviour in cloth simulation using hysteresis. Computer graphics forum, 2013, 32(8), 183–194, doi: 10.1111/cgf.12196.
  60. BRIDSON, R., MARINO, S., FEDKIW, R. Simulation of clothing with folds and wrinkles. In SCA ’03, Symposium on computer animation : book of proceedings. Switzerland, 2003, 28–36.
  61. THOMASZEWSKI, Bernhard, PABST, Simon STRAßER, Wolfgang. Continuum-based strain limiting. Computer Graphics Forum, 2009, 28(2), 569-576, doi: 10.1111/j.1467-8659.2009.01397.x.

 


 

315      Comparative Evaluation of Dynamic Mechanical Properties of Epoxy Composites Reinforced with Woven

………..Fabrics from Sansevieria (Sansevieria trifasciata) Fibres and Banana (Musa sapientum) Fibres

………..• Samson Rwawiire1,2, Joe Okello1 and Godfrey Habbi1 Abstract and references

1Busitema University, Uganda, Faculty of Engineering, Department of Textile and Ginning Engineering, P. O. Box 236, Tororo, Busitema, Uganda

2Technical University of Liberec, Faculty of Textile Engineering, Department of Material Engineering, Studentská 2, 461 17 Liberec 1, Czech Republic

 

Original Scientific Article

Received 10-2014 • Accepted 11-2014

Corresponding author:

Samson Rwawiire

E-mail: rbsjunior@gmail.com

 

Abstract

Globally, sustainable materials that are environmentally friendly and the path towards sustainable development are needed. Natural plant fibre utilization in various industries has seen a surge, especially in the automotive sector. Natural fibres such as from Sansevieria and banana pseudostem are readily available and have considerable mechanical properties that make them good candidates for reinforcement epoxy resins. The dynamic mechanical properties (DMA) of Sansevieria (Sansevieria trifasciata) and banana pseudostem (Musa sapientum) woven fibre epoxy composites are discussed. The results show that the optimum temperature range of application of the Sansevieria and banana epoxy composites is up to 50 °C. The glass transition temperature, Tg, obtained from the curves of mechanical damping factor (tan δ) was 100 °C and 120 °C for Sansevieria and banana fibre epoxy composites, respectively.

Keywords: DMA, Sansevieria trifasciata, banana fibre, Musa sapientum, epoxy composite

 

References

  1. Global Natural Fiber Composites Market 2014‒2019: Trends, Forecast and Opportunity Analysis. Available on World WideWeb: <http://www.researchandmarkets.com/reports/2881528/global-natural-fiber-composites-market-2014‒2019>.
  2. FARUK, Omar, BLEDZKI, K. Andrzej, FINK, Hans-Peter and SAIN, Mohini. Progress report on natural fiber reinforced composites. Macromolecular Materials and Engineering, 2014, 299(1), 9‒26, doi: 10.1002/mame.201300008.
  3. HOBSON, John, CARUS, Michael. Targets for bio-based composites and natural fibres. JEC composites, 2011, 63, 31‒32.
  4. BLEDZKI, K. Andrzej, FARUK Omar, VOLKER, E. Sperber. Cars from Bio‐Fibres. Macromolecular Materials and Engineering, 2006, 291(5), 449‒457, doi: 10.1002/mame.200600113.
  5. THILAGAVATHI, G., PRADEEP, E., Kannaian, T., SASIKALA, L. Development of natural fiber nonwovens for application as car interiors for noise control. Journal of Industrial Textiles, 2010, 39(3), 267‒278, doi: 10.1177/1528083709347124.
  6. MA, Ming, YUAN, Bai, and XIAO, Ming, Qian. Development of natural fibre non-woven materials’ application as car interiors for noise reduction. Advanced Materials Research, 2011, 332, 1531‒1534, doi: 10.4028/www.scientific.net/AMR.332-334.1531.
  7. PARIKH, D. V, CHEN, Y., SUN, L. Reducing automotive interior noise with natural fiber nonwoven floor covering systems. Textile research journal, 2006, 76(11), 813‒820, doi: 10.1177/0040517506063393.
  8. KARUS, Michael, MARKUS, Kaup. Natural fibres in the European automotive industry. Journal of Industrial Hemp, 2002, 7(1), 119‒131, doi: 10.1300/J237v07n01_10.
  9. NJUGUNA, James, WAMBUA, Paul, PIELICHOWSKI, Krzysztof, KAYVANTASH, K. Natural fibre-reinforced polymer composites and nanocomposites for automotive applications. In Cellulose Fibers: Bio-and Nano-Polymer Composites. Edited by Kalia Susheel, B. S. Kaith, Kaur Inderjet. Springer Berlin Heidelberg, 2011, 661‒700.
  10. MOHANTY, K. Amar, MISRA, Manjusri, HINRICHSEN, G. Biofibres, biodegradable polymers and biocomposites: an overview. Macromolecular Materials and Engineering, 2000, 276(1), 1‒24, doi: 10.1002/(SICI)1439-2054(20000301)276:1<1::AID-MAME1>3.0.CO;2-W.
  11. Natural fibers, biopolymers, and composites. Edited by Amar K. Mohanty, Manjusri Misra, Lawrence T. Drzal. CRC Press, 2005, 896.
  12. JOSHI, V. Satish, DRZAL, T. Lawrence, MOHANTY, K. Amar, ARORA, S. Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied science and manufacturing, 2004, 35(3), 371−376, doi: 10.1016/j.compositesa.2003.09.016.
  13. LA MANTIA, F. P and MORREALE, M. Green composites: A brief review. Composites Part A: Applied Science and Manufacturing, 2011, 42(6), 579−588, doi: 10.1016/j.compositesa.2011.01.017.
  14. WAMBUA, Paul, IVENS, Jan, VERPOEST, Ignaas. Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 2003, 63(9), 1259−1264, doi: 10.1016/S0266-3538(03)00096-4.
  15. KUMAR, M. Ashok, REDDY, K. Hemachandra, REDDY, G. Ramachandra, MAHESH, K. Vishnu. Characterization of light weight epoxy composites from short Sansevieria Cylindrica fibers. Fibers and Polymers, 2012, 13(6), 769−774, doi: 10.1007/s12221-012-0769-5.
  16. REDDY, G. Ramachandra, KUMAR, M. Ashok, CHAKRADHAR, K. V. P. Fabrication and performance of hybrid betel nut (Areca catechu) short fiber/Sansevieria cylindrical Agavaceae epoxy composites. International journal of materials and biomaterials applications, 2011, 1(1), 6−13.
  17. KUMAR, M. Ashok, REDDY, Ramachandra, REDDY, G. Harinatha, REDDY, N. Subbarami, REDDY, K. Hemachandra, REDDY, Y. V. Mechanical properties of randomly oriented short Sansevieria trifasciata fibre/epoxy composites. Journal of Metallurgy and Materials Science, 2011, 53(1), 85−95.
  18. SREENIVASAN, V. S, RAVINDRAN, D, MANIKANDAN, V and NARAYANASAMY, R. Mechanical properties of randomly oriented short Sansevieria cylindrical fibre/polyester composites. Materials & Design, 2011, 32(4), 2444−2455, doi: 10.1016/j.matdes.2010.11.042.
  19. SATHISHKUMAR, T. P, NAVANEETHAKRISHNAN, P, SHANKAR, S, RAJASEKAR, R. Investigation of chemically treated randomly oriented sansevieria ehrenbergii fiber reinforced isophthallic polyester composites. Journal of Composite Materials, 2014, 48(24), 2961−2975, doi: 10.1177/0021998313503589.
  20. VENKATESHWARAN, N., ELAYAPERUMAL, A. Banana fiber reinforced polymer composites-a review. Journal of Reinforced Plastics and Composites, 2010, 29(15), 2387−2396, doi: 10.1177/0731684409360578.
  21. POTHAN, A. Laly, OOMMEN, Zachariah, THOMAS, Sabu. Dynamic mechanical analysis of banana fiber reinforced polyester composites. Composites Science and Technology, 2003, 63(2), 283−293, doi: 10.1016/S0266-3538(02)00254-3.
  22. PAUL, Sherely, Annie, SINTUREL, Christoph, KURUVILLA, Joseph, MATHEW, G. D., POTHAN, A. Laly, THOMAS, Sabu. Dynamic mechanical analysis of novel composites from commingled polypropylene fiber and banana fiber. Polymer Engineering & Science, 2010, 50(2), 384−395, doi: 10.1002/pen.21522.
  23. IDICULA, Maries, BOUDENNE, Abderrahim, UMADEVI, L., IBOS, Laurent, CANDAU, Yves, THOMAS, Sabu. Thermophysical properties of natural fibre reinforced polyester composites. Composites Science and Technology, 2006, 66(15), 2719−2725, doi: 10.1016/j.compscitech.2006.03.007.
  24. VENKATESHWARAN, N., PERUMAL, A. Elaya, RAJ, R. H. Arwin. Mechanical and Dynamic Mechanical Analysis of Woven Banana/Epoxy Composite. Journal of Polymers and the Environment, 2012, 20(2), 565−572, doi: 10.1007/s10924-011-0410-5.

 


 

321     Clothes and Costumes as Form of Nonverbal Communication • Todorović Tijana1, Toporišič Tomaž2 and

………..Alenka Pavko Čuden1 Abstract and references

1University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, Snežniška ulica 5, 1000 Ljubljana
2University of Primorska, Faculty of Humanities, Titov trg 5, 6000 Koper

 

Scientific Review

Received 08-2014 • Accepted 11-2014

Corresponding author:

Tijana Todorović

Tel. 00 386 41 530 780

E-mail: tijanaart@gmail.com

 

Abstract

Clothing presents an inseparable part of the human body. Linking art with clothing synthesizes the spiritual and social nature of human conduct, and it also creates metaphors and symbolic relationships in the anthropogenic environment. The aim of this synthetic view is to help us understand our internal worlds. The body represents the only support or shelter that a person (or humankind) can rely on. Through clothing, a person can make their first step in non-verbal communication towards the world. Clothing not only shows our appearance, but also represents our interior world. We attract attention with the help of our clothing. With apparel, we communicate with others, express acceptance or rejection, or collective attitudes in relation to understanding something that is likeable, sociable, moral etc. Clothing can be interpreted as a transmission of information between a carrier and recipient through symbolic messages in the general or specific scope of the clothing culture. In such open communication, a person creates their individuality through appearance. Messages and information about ourselves are visually sent and received.

Keywords: clothing and its importance, culture, subculture, modern clothing, communication, sign of affiliation, form, function, clothing and semiotics, costume

 

References

  1. MESCH, Claudia, MICHELY, Viola Maria. Joseph Beuys: The Reader. Cambridge, MA : MIT Press, 2007, 352.
  2. CUNNINGHAM, Rebecca. The Magic Garment: Principles of Costume Design. Prospect Heights, Il. : Waveland Press, 1994, 395.
  3. Terrizae’s Western Fashion Timeline [online]. Midnightcoctails [accessed 19.10.2014]. Available on World Wide Web: <http://www.midnightcoctails.com/2543/fashion-timeline.html>.
  4. ECO, Umberto. Kultura, informacija, komunikacija. Beograd : Nolit, 1973, 444.
  5. HEBDIGE, Richard Dick. Subculture: The Meaning of Style. London: Routledge, 1979, 208.
  6. BARTHES, Roland. The Fashion System. Berkeley : University of California Press, 1967.
  7. Punk [online]. Mr Porter, Stylepedia [accessed 21. 06. 2014]. Available on World Wide Web: <http://cache.mrporter.com/stylehelp/stylepedia/p>.
  8. DOMOVIĆ, Želimir, ANIĆ, Šime, KLAIĆ, Nikola. Rječnik stranih riječi: tuđice, posuđenice, izrazi, kratice i fraze. Zagreb: Sani-Plus, 1998.
  9. Styles in subcultures [online]. Group presentation, Sybella’s PCA Crafts in Context [accessed 19.10.2014]. Available on World Wide Web: <http://sbuttress.blogspot.com/2014/04/group-presentation.html>.
  10. TODOROVIĆ, Aleksandar. Sociologija mode. Niš : Gradina, 1980, 203.
  11. MUGGLETON, David. Inside Subculture: The Postmodern Meaning of Style. Oxford : Berg, 2000, 198.
  12. SVENSEN, Lars. Fashion: A Philosophy. London : Reaktion Books, 2006, 188.
  13. Converse All Star [online]. Fanfics, Spirit [accessed 24.4.2014]. Available on World Wide Web: <http://socialspirit.com.br/fanfics/historia/fanfiction-fallen-alem-das-sombras-2009436/capitulo2>.
  14. GRUEN, Bob [photo, online]. John Lennon glasses [accessed 24.10.2014]. Available on World Wide Web: <http://partnouveau.com/?p=2717>.
  15. Flickr [online]. Punk’s Cherokee hairstyle [accessed 24.4.2014]. Available on World Wide Web: <https://www.flickr.com/photos/22658121@N00/143655424/in/photostream/>.
  16. Catholic vestment in England and Wales [online]. 30 Padres Removidos do Vaticano, Blogonicvs [accessed 23. 04. 2014]. Available on World Wide Web: <http://blogonicus.blogspot.com/2013/11/30-padres-removidos-do-vaticano.html>.
  17. SAMSA, Gregor [photo, online]. A Russian Honour Guard [accessed 23. 04. 2014]. Available on World Wide Web: <http://tape.format.com/#5>.
  18. HARROLD, Robert, LEGG, Phyllida. Costumes from Albania, Poland, Bulgaria, and Romania. In: Folk Costumes of the World. London : Cassell, 1999.
  19. Different cultural tastes, traditional dress, different cultures [online]. Group presentation, Sybella’s PCA Crafts in Context [accessed 19.10.2014]. Available on World Wide Web: <http://sbuttress.blogspot.com/2014/04/group-presentation.html>.
  20. Cinema Arts Centre [online]. Jimi Hendrix on stage [accessed 20.10.2014]. Available on World Wide Web: <http://www.cinemaartscentre.org/event/jimi-hendrix-rock-legends-live/>.
  21. ALLEN, O. [photo, online]. Jay-Z clothes [accessed 20.10.2014]. Available on World Wide Web: <http://www.upscalehype.com/2011/06/jay-z-in-balmain-military-shirt-g-star-shorts-and-adidas-superstar-sneakers/>.
  22. SMITH, Lizzie [online]. Michael Jackson, Mailonline [accessed 20.10.2014]. Available on World Wide Web: <http://www.dailymail.co.uk/tvshowbiz/article-2184981/Michael-Jackson-28in-waist–dropped-inch-shows-Costume-designer-reveals-secrets.html#ixzz3HAqIkG1o>.
  23. McQUEEN, Alexander [designer, online]. Fall 2008 Ready-to-Wear [accessed 20.10.2014]. Available on World Wide Web: <http://www.style.com/fashion-shows/fall-2008-ready-to-wear/alexander-mcqueen/collection>.
  24. DeviantART [online]. Neo-Nazi Skinheads [accessed 20.10.2014]. Available on World Wide Web: <http://fc04.deviantart.net/fs70/i/2012/159/1/a/neo_nazi_skinheads_by_themistrunsred-d52rzcr.jpg>.
  25. Skinheads [photo, online]. In: This is England by Shane Meadows (dir.) [accessed 20.10.2014]. Available on World Wide Web: <http://media-cache-ak0.pinimg.com/736x/d7/20/5a/d7205a3d858366051affc6e992e0a0ca.jpg>.
  26. KURE, Mitsuo. Samurai: An Illustrated History. North Clarendon, Vermont : Tuttle Publishing, 2002, 192.
  27. YAMAMOTO, Yohji [designer, online]. Spring/summer collection 2012 [accessed 20.10.2014]. Available on World Wide Web: <http://dapperkid.blogspot.com/2012/05/pocket.html>.
  28. IRVING, Penn [photo, online]. Issey Miyake’s design 1995 [accessed 20.10.2014]. Available on World Wide Web: <http://the-rosenrot.com/2012/08/the-brilliance-of-issey-miyake-a-retrospective.html>.
  29. DRESSY, Misses [photo, online]. A Traditional Kimono [accessed 20.10.2014]. Available on World Wide Web: <http://www.missesdressy.com/blog/the-softly-exotic-kimono-for-ss-2013.html/kimono01>.
  30. STYLER, George [designer, online]. Etno design [accessed 20.10.2014]. Available on World Wide Web: <http://eclectic-society.com/meet-world-ethno-fashion-designer-george-styler/>.
  31. MEAKIN, James [photo, online]. Ethno pop [accessed 20.10.2014]. Available on World Wide Web: <http://ego-alterego.com/wp-content/uploads/2012/07/616.jpg>