CONTENTS

SCIENTIFIC PAPERS 

108  Clothing Pattern Construction Systems • Tanja Podbevšek Abstract and References

University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, Snežniška 5, SI-1000 Ljubljana

Scientific Review
Received 03-2014 • Accepted 03-2014

Corresponding author:
dr. Tanja Podbevšek
E-mail: tanja.podbevsek@ntf.uni-lj.si

 

Abstract

A clothing pattern construction system is indispensable in every garment producing company. Using one of the so-called traditional systems is still very common in practice. Such a system includes complete instructions for the development of pattern parts of a garment from two-dimensional textile surfaces which more or less fits the body of the wearer. There are many contemporary construction systems on the market. Slovenian garment producing companies mostly use one of the German systems (Müller’s system) while the German ready-to-wear industry uses several different systems, which are also different from those used in Great Britain, Italy, Hungary etc. The paper offers a comparison of traditional clothing pattern construction systems from different authors. The specified comparison is drawn in the field of anthropometric measurement methods, designations of sizes/measurement tables, equations for calculating secondary measures, and methods of a clothing pattern construction that can be seen in different pattern cuts and their fittings to the physical dimensions of the body. The observed differences are abundant, substantial, and significant. The future pattern construction systems will include a computer-aided design based on the data gathered with 3D electronic body scanners. Such scanners enable faster and more complex data collection of body dimensions, body shapes and postures of potential garment consumers and consequently provide better garment fit to customers’ bodies.

Keywords: pattern construction systems, development of basic clothing pattern block, clothing anthropometry, measurement table, pattern development methods

 

References

  1. PODBEVŠEK, Tanja. Clothing pattern construction systems – the future perspective. V 2nd International Textile, Clothing & Design Conference : Book of Proceedings. Editor Z. Dragčević. Dubrovnik : Faculty of Textile Tehnology, University of Zagreb, 2004, 580–585.
  2. PODBEVŠEK, Tanja. Garment anthropometry – a challenge for the future. V 2nd International Textile, Clothing & Design Conference : Book of Proceedings. Editor Z. Dragčević. Dubrovnik : Faculty of Textile Tehnology, University of Zagreb, 2004, 574–579.
  3. PODBEVŠEK, Tanja. Pattern construction of the skirt as related to the female body shape. V 2nd International Textile, Clothing & Design Conference : Book of Proceedings. Editor Z. Dragčević. Dubrovnik : Faculty of Textile Tehnology, University of Zagreb, 2004, 568−573.
  4. PODBEVŠEK, Tanja. The measurement of the body rise in the trousers pattern construction. V5th World Textile Conference AUTEX 2005 : Book of Proceedings. Portorož, 2005, 677–682.
  5. PODBEVŠEK, Tanja. Anthropometric measuremetn methodology of the trousers’ length. V 37th International Symposium on Novelties in Textiles : Book of Proceedings. Editor B. Simončič in sod.. Ljubljana : Faculty for Natural Sciences and Engineering, Department of Textiles, University of Ljubljana, 2006.
  6. PODBEVŠEK, Tanja. Influence of the body posture on the pattern construction of the close fitted dress. V 3rd International Textile, Clothing & Design Conference : Book of Proceedings. Editor Z. Dragčević. Dubrovnik : Faculty of Textile Tehnology, University of Zagreb, 2006, 489−494.
  7. CHEN, Chin-Man, CHIEN, Shih. Analysis of upper physical characteristics based on angle measurements. Textile Research Journal, 2011, 81(3), 301−310, doi: 10.1177/0040517510380781.
  8. SONG, Hwa Kyung, ASHDOWN, P. Susan. Categorization of lower body shapes for adult females based on multiple view analysis. Textile Research Journal, 2011, 81(9), 914−931, doi: 10.1177/0040517510392448.
  9. PODBEVŠEK, Tanja. Aesthetic appearance – Distance between vertical darts. V 3rd International Textile, Clothing & Design Conference : Book of Proceedings. Editor Z. Dragčević. Dubrovnik : Faculty of Textile Tehnology, University of Zagreb, 2006, 883–887.
  10. HULME, W.H. “Women’s and Children’s Garment Design”. London : The National Trade Press Limited, 1948, 204.
  11. KUNC, Teodor. Toaleta. Ljubljana : Samozaložba Teodor Kunc, 1933.
  12. STIEGLER, Margarethe. Schnittkonstruktionen für Kleider und Blusen. München : Rundschau-Verlag Otto G. Königer GmbH & Co., 1997.
  13. ALDRICH, Winifred. Metric Pattern Cutting, 4th edition. Blackwell Science, 2004, 308.
  14. DI RIENZO, Sebastiano. La tecnica della moda. Padova : Grafiche Muzzio Spa, 1992.
  15. SAROLTA, Deakfalvi. Szabás – Szakrajz I.. Budapest : Sokszorositó – Könyvkötő Üzeme 1969.
  16. GUSEV. Raskroj in pošiv ženskih paljto, Moskva, 1962.
  17. CEREMNYH, A. I. Osnovy hudoženstvennogo proektirovanija odeždy. Moskva : Legkaja industrija, 1977.
  18. GREGORČIČ, Suzana, RUDOLF, Andreja, ABRAM-ZVER, Marta. Research on woman’s dress fitting designed from different construction systems. V 3rd Scientific-Professional Conference Textile Science and Economy (TNP 2011) : proceedings. Zrenjanin, Technical Faculty “Mihajlo Pupin”, 2011.
  19. Size designation of clothes – Definitions and body measurement procedure, Standard ISO 3635:1981.
  20. Garment construction and anthropometric surveys – Body dimensions, Standard ISO 8559:1989.
  21. FEKETΈNΈ H. E. Női szabó szakrajz. Budapest : Műszaki Könyvkiadó, 1983.
  22. BRAY, Natalie, HAGGAR, Ann. Dress Pattern Designing. 5th edition. Blackwell Publishing Limited, 2003, 176.
  23. MCCUNN, H. Donald. How to Make Sewing Patterns. Reprint edition. San Francisco : Design Enterprises of San Francisco, 1977.
  24. COOKLIN, Gerry. Master Patterns and Grading for Women’s Outsizes: Pattern Sizing Technology. Blackwell Science, 1995, 128.
  25. COOKLIN, Gerry. Pattern Cutting for Women’s Outerwear. Blackwell Publishing, 1994, 192.
  26. KUNICK, Philip. Modern sizing and pattern making for women’s and children’s garments: A scientific study in pattern construction and a standard textbook for the clothing industry. Philip Kunick Publications, 1984, 178.
  27. STIEGLER, Margarete, KROOLOPP Luise. Schnittkonstruktionen für Jacken und Mäntel. München : Rundschau-Verlag Otto G. Königer GmbH & Co., 1994, 112.
  28. UJEVIĆ, Darko, ROGALE, Dubravko, HRASTINSKI, Marijan, GERŠAK, Jelka, DRAGČEVIĆ, Zvonko, ESERT, Mario, KOREN, Tomislav. Tehnike konstruiranja i modeliranja odjeće. Zagreb : Tekstilno-tehnološki fakultet Sveučilišta u Zagrebu, 2000, 338.
  29. UJEVIĆ, Darko, SZIROVICZA, Lajos, DIMEC, Mirjana. Prikaz istraživanja i usporedbe sustava odjevnih veličina. Tekstil, 2003, 52(12), 611–620.
  30. ČUK, Francka. Razmerja v antropometriji in konfekciji. Tekstilec, 1994, 37(1–2), 20–23.
  31. Označevanje velikosti oblačil – 3. del: Mere in koraki, Standard SIST EN 13402-3:2005.
  32. Schnittkonstruktionen für Röcke und Hosen – System M.Müller & Sohn. München : Rundschau-Verlag Otto G. Königer GmbH & Co, 1996.
  33. PODBEVŠEK, Tanja. Comparison of the Pattern construction of the female blouse by two contemporary construction systems. V 5th International Conference IN-TECH-ED ’05 : Book of Proceedings. Budapest : Budapest Tech, Rejtő Sándor Faculty of Light Industry Engineering, 2005, 367–374.
  34. CHOI, Sunyoon, ASHDOWN, P. Susan. 3D body scan analysis of dimensional change in lower body measurements for active body positions. Textile Research Journal, 2011, 81(1), 81−93, doi: 10.1177/0040517510377822.

 


 

118  Biodegradation of Natural Textile Materials in Soil • Khubaib Arshad1, Mikael Skrifvars2, Vera Vivod3,
        Julija Volmajer Valh4 in Bojana Vončina3 Abstract and References

1University of Boras, The Swedish School of Textiles, Bryggaregatan 17, 501 90 Boras, Sweden
2University of Boras, School of Engineering, Allegatan 1, 501 90 Boras, Sweden
3PoliMaT, Centre of Excellence for Polymer Materials and Technologies, Tehnološki park 24, 1000 Ljubljana
4University of Maribor, Faculty of Mechanical Engineering, Institute of Engineering Materials and Design, Smetanova 17, 2000 Maribor

Original Scientific Paper
Received 02-2014 • Accepted 02-2014

Corresponding author:
Prof. Dr. Sc. Bojana Vončina
E-mail: bojana.voncina@um.si

 

Abstract

World is facing numerous environmental challenges, one of them being the increasing pollution both in the atmosphere and landfills. After the goods have been used, they are either buried or burnt. Both ways of disposal are detrimental and hazardous to the environment. The term biodegradation is becoming more and more important, as it converts materials into water, carbon dioxide and biomass, which present no harm to the environment. Nowadays, a lot of research is performed on the development of biodegradable polymers, which can “vanish” from the Earth surface after being used. In this respect, this research work was conducted in order to study the biodegradation phenomenon of cellulosic and non-cellulosic textile materials when buried in soil, for them to be used in our daily lives with maximum efficiency and after their use, to be disposed of easily with no harmful effects to the environment. This research indicates the time span of the use life of various cellulosic and non-cellulosic materials such as cotton, jute, linen, flax, wool when used for the reinforcement of soil. The visual observations and applied microscopic methods revealed that the biodegradation of cellulose textile materials proceeded in a similar way as for non-cellulosic materials, the only difference being the time of biodegradation. The non-cellulosic textile material (wool) was relatively more resistant to microorganisms due to its molecular structure and surface.

Keywords: biodegradation, composting, natural textile materials, FT-IR

 

References

  1. HAWLEY, M. Jana. Digging of Diamonds: A conceptual framework for understanding reclaimed textile products. Clothing and Textile Research Journal, 2006, 24(3), 262−275, doi: 10.1177/0887302X06294626.
  2. FARRINGTON, D. W., LUNT, J., DAVIES, S., BLACKBURN, R. S. Poly(lactic acid) fibres. V Biodegradable and Sustainable Fibres. Edited by R. S. Blacburn. England : Woodhead Publishing, 2005, 191−220.
  3. ALEXANDER, Martin. Biodegradation and bioremediation. 2nd edition. New York : Academic press, 1999, 453.
  4. FALKIEWICZ-DULIK, Michalina, JANDA, Katarzyna, WYPYCH, George. Handbook of biodegradation, biodeterioration and biostabilization. Toronto : ChemTec Publishing, 2010, 250.
  5. VAN DER ZEE, M., STOUTJESDIJK, J. H., VAN DER HEIJDEN, P. A. A. W., DE WIT, D. Structure-biodegradation relationships of polymeric materials. 1. Effect of degree of oxidation of carbohydrate polymers. Journal of Environmental Polymers Degradation, 1995, 3(4), 235-242, doi: 10.1007/BF02068678.
  6. ZAIKOV, Gennady, SEMENOV, S. A., GUMARGALIEVA, K. Z. Biodegradation and durability of materials under the effect of microorganisms (new concepts in polymer science). 1st Edition. V.S.P. Intl Science, Zeist, 2003, 232.
  7. WALKER, L. P., WILSON, D. B. Enzymatic Hydrolisis of Cellulose: An Overview. Bioresource Technology, 1991, 36(1), 3−14, doi: 10.1016/0960-8524(91)90095-2.
  8. SALERNO-KOCHAN, R., SZOSTAK-KOTOWA, J. Biodegradation of Cellulose Textiles, Fibres and Textiles in Eastern Europe, 2001, 9, 69−72.
  9. HEE PARK, Chung, KYUNG KAN, Yung, SOON IM, Seung. Biodegradabillity of Cellulose Fabrics. Journal of Applied Polymer Science, 2004, 94(1), 248−253, doi: 10.1002/app.20879.
  10. TOMŠIČ, Brigita, SIMONČIČ, Barbara, OREL, Boris, VILČNIK, Aljaž, SPREIZER, Helena. Biodegradability of cellulose fabric modified by imidazolidinone. Carbohydrate Polymers, 2007, 69(3), 478−488, doi: 10.1016/j.carbpol.2007.01.003.
  11. KLEMENČIČ, Danijela, SIMONČIČ, Barbara, TOMŠIČ, Brigita, OREL, Boris. Biodegradation of silver functionalized cellulose fibres. Carbohydrate Polymers, 2010, 80(2), 426−435, doi: 10.1016/j.carbpol.2009.11.049.
  12. BLACKBURN, R. S. Biodegradable and sustainable fibres. England : Woodhead Publishing Limited, 2005, 464.
  13. CHANDRA, R., RUSTGI, Renu. Biodegradable polymers. Progress in Polymer Science, 1998, 23, 1273−1335, doi: 10.1016/S0079-6700(97)00039-7.
  14. DESAI, A. J., PANDEY, S. N. Microbial degradation of cellulose textiles. Journal of Scientific and Industrial Research, 1971, 30, 598−606.
  15. ISO 11721-1:2001 – Textiles-Determination of the resistance of cellulose-containing textiles to micro-organisms – Soil burial test- Part 1: Assessment of rot-retardant finishing. SIST, Ljubljana, 2001.
  16. ISO 11721:2003 – Textiles-Determination of the resistance of cellulose-containing textiles to micro-organisms – Soil burial test- Part 2: Identification of long term resistance of a rot retardant finish. SIST, Ljubljana, 2003.
  17. 17   RIJAVEC, Tatjana, RAFFAELLI, Dubravka, SFILIGOJ – SMOLE, Majda, BUKOŠEK, Vili. Textilne surovine: osnove. Univerza v Ljubljani, Naravoslovnotehniška fakulteta, Oddelek za tekstilstvo, 2000, 145.
  18. WARNOCK, Mary, DAVIS, Kaaron, WOLF, Duane, GBUR, Edward. Soil burial effects on biodegradation and properties of three cellulosic fabrics. AATCC Review, 2011, 11(1), 53−57.
  19. FRISONI, Giovanna, BAIARDO, Massimo, SCANDOLA, Mariastella. Natural cellulose fibres: heterogeneous acetylation kinetics and biodegradation behavior. Biomacromolecules, 2001, 2(2), 476−482, doi: 10.1021/bm0056409.
  20. TOMŠIČ, Brigita, SIMONČIČ, Barbara, VINCE, Jelica, OREL, Boris, VILČNIK, Aljaž, FIR, Mojca, ŠURCA VUK, Angela, JOVANOVSKI, Vasko. The use of ATR IR spectroscopy in the study of structural changes of the cellulose fibres. Tekstilec, 2007, 50(1−3), 3−15.
  21. WANG, Wei, LIU, Jie, CHEN, Guanjun, ZHANG, Yingshu, GAO, Peiji. Function of a low molecular weight peptide from Trichoderma pseudokoningii S38 during cellulose biodegradation. Current Microbiology, 2003, 46, 371−379, doi: 10.1007/s00284-002-3864-9.
  22. HULLEMAN, S. H. D., VAN HEZENDONK, J. M., VAN DAM, J. E. G. Determination of cystallinity in native cellulose from higher plants with diffuse reflectance Fourier transform infrared spectroscopy. Carbohydrate Research, 1994, 261(1), 163−172, doi: 10.1016/0008-6215(94)80015-4.
  23. SEN, K. M., WOODS, J. M. The structure of jute: I. The two-fold function of lignin. Biochimica et Biophysica Acta, 1949, 3, 510−517, doi 10.1016/0006-3002(49)90123-7.
  24. SAHOO, K. Prafulla, MOHAPATRA, Roomky, SAHOO, Anusmita, DEBSARKAR, Nandalal, SWAIN, K. Sarat. Characterization, biodegradation, and water absorbency of chemically modified tossa variety jute fiber via pulping and grafting with acrylamide. International Journal of Polymer Analysis and Characterisation, 2005, 10(3-4), 153−167, doi: 10.1080/10236660500397845.
  25. DAY, Arnaud, RUEL, Katia, NEUTELINGS, Godfrey, CRONIER, David, DAVID, Helene, HAWINKS, Simon, CHABBERT, Brigitte. Lignification in the flax stem: evidence for an unusual lignin in bast fibres. Planta, 2005, 222(2), 234−245, doi: 10.1007/s00425-005-1537-1.
  26. JOHNSON, N. A. G., WOODA, E. J., INGHAMA, P. E., MCNEILA, S. J. MCFARLANEA, I. D. Wool as a technical fibre. Journal of the Textile Institute, 2003, 94(3-4), 26−41, doi: 10.1080/00405000308630626.

 


 

133  Study on the Impact of Dye – Sublimation Printing on the Effectiveness of Underwear
         Viera Glombikova and Petra Komarkova Abstract and References

Technical University of Liberec, Faculty of Textile Engineering, Department of Clothing Technology, Liberec, Czech Republic

Original Scientific Paper
Received 02-2014 • Accepted 04-2014 

Corresponding author:
Ph.D. Viera Glombikova, Ing. Bc
Tel.: +420 485353124
E-mail: viera.glombikova@tul.cz

 

Abstract

This study deals with the effect of dye-sublimation printing on the performance of underwear. Two groups of polyester knitted fabrics were analysed. The change of tree selected groups of properties was investigated before and after the application of dye-sublimation printing, namely durability (breaking force and elongation, abrasion resistance and pilling resistance), physiological properties (water vapour permeability, air permeability) and colour-fastness (resistance to rubbing, to domestic and commercial laundering, to perspiration). Further, the structure changes of fabrics (thickness and density) during heat pressing both without application of dyes (without transfer printing on material) and with application of dyes were also studied to analyse the affect extent of printing conditions (particularly pressure and temperature) on total wear comfort printed fabrics. The results show that the tested materials meet requirements in terms of colour-fastness to rubbing, to domestic and commercial laundering and to perspiration to a very high standard (grade 5). In terms of abrasion resistance and pilling resistance the material also showed high resistance. The air permeability for both fabrics decreased by about 40% in comparison with the value obtained before printing and the mechanical properties slightly increased (about 8%). This was due to an increase in the stitch density and a decrease in the thickness, therefore reducing the porosity of the material for printing conditions, mainly due to the influence of the pressure and temperature within the heat press machine.

Keywords: dye-sublimation printing, underwear, physiological comfort, colour-fastness, mechanical properties, structure changes

 

References

  1. Advanced Innovative Technologies. Heat transfer printing – sublimation [dostopno na daljavo], [citirano 04. 07. 2013]. Dostopno na svetovnem spletu: <http://www.aitequipment.com/cgi-bin/db_searchz.cgi?database=dbpg_contactus.exm&template=dbpg_contactus_tmplt.htm&0=1>.
  2. JESSE J. HEAP & SON, Inc. Introduction to heat transfer printing [dostopno na daljavo], [citirano 05. 07. 2013]. Dostopno na svetovnem spletu: <http://www.jesseheap.com/heat-transfer-printing-introduction.html>.
  3. WU, Yu-Ju, DILWORTH, J. K., GRANT, G. Light fastness of heat transfer on polyester blend fabrics. V NIP25: 25th International Conference on Digital Printing Technologies and Digital Fabrication. Louisville, United States, 2009, 118–121.
  4. HUNTING, Brad, DERBY, Stephen, PUFFER, Raymond, LOOMIE, Leo. Thermal Ink Jet Printing of Textiles. V Recent Progress in Ink Jet Technologies II. Edited by Eric Hanson. Springfield, Virginia : Society for Imaging Science and Technology, 1999, 568 −573.
  5. WU, Yu-Ju, GRANT, G. Key factors affecting color reproduction on polyester fabrics using heat transfer printing. V 63rd Annual Technical Conference of the Technical Association of the Graphic Arts. Pittsburgh, Pennsylvania, 2011, 118–134.
  6. WU, Yu-Ju, BAI, R. Color reproduction capability on 100% cotton fabrics using dye-sublimation heat transfer printing. V Proceedings of the NIP 27th International Conference on Digital Printing Technologies and 7th International Conference on Digital Fabrication. Minneapolis, United States, 2011, 41–44.
  7. SWANSON, Joanna. Heat transfer printing method [dostopno na daljavo], [citirano 22. 07. 2013]. Dostopno na svetovnem spletu: <http://www.ehow.co.uk/about_6599022_heat-transfer-printing-method.html>.
  8. PEARSON, M. The Key Elements of Sublimation Heat Transfer Printing. Advanced Innovative Technologies [dostopno na daljavo], [citirano 22. 07. 2013]. Dostopno na svetovnem spletu: <http://www.aitequipment.com/cgi-bin/db_searchz.cgi?database=dbpg_resources.exm&template=dbpg_resources_tmplt.htm&0=2>.
  9. ABD EL-THALOUTH, I., EL-KASHOUTI, M. A., HEBEISH, A. Novel methods for heat transfer printing of polyester. Acta Polymerica, 1982, 33(6), 385–387, doi:  10.1002/actp.1982.010330613.
  10. GUO, L. H., Zhang, M. Y., Guo, X. H., Zhu, Q. Research on the color models of the heat transfer printing paper. V International Conference on Chemical Engineering and Advanced Materials. Changsha, 2011, 1332–1335, doi: 10.4028/www.scientific.net/AMR.236-238.1332.
  11. HALLAS, Geoffrey, CHOI, Jae – Hong. Synthesis and properties of novel aziridinyl azo dyes from 2-aminothiophenes-Part 2: Application of some disperse dyes to polyester fibres. Dyes and Pigments, 1999, 40(2–3), 119–129, doi: 10.1016/S0143-7208(98)00032-1.
  12. KIATKAMJORNWONG, Suda, PUTTHIMAI, P., NOGUACHI, H. Comparison of textile print quality between inkjet and screen printings. Surface Coatings International Part B: Coatings Transactions, 2005, 88(1), 25–34, doi: 10.1007/BF02699704.
  13. MIKUŽ, Mašenka, ŠOSTAR-TURK, Sonja, FORTE-TAVČER, PetraPrinting and design in the processes of textile inkjet printing, Tekstilec, 2008, 51(1-3), 7–29.
  14. HAVELKA, Antonin, KUS, Zdenek. The transport phenomena of semi-permeable membrane for sport cloth. International Journal of Clothing Science and Technology, 2011, 23(2/3), 119–130, doi: 10.1108/09556221111107315.
  15. HAVENITH, George. Heat balance when wearing protective clothing. The annals of occupation hygiene, 1999, 43(5), 289−296, doi: 10.1093/annhyg/43.5.289.
  16. GLOMBIKOVA, Viera, KOMARKOVA, Petra. To investigate the effect of dye-sublimation printing on the performance of underwear. V 8th International Conference TEXCI 2013. TU Liberec, Czech Republic, 2013.

 


 

139  Nanomaterials for Functional Textiles • Marijana Lakić1, Aljoša Košak1, 2,
        Andreja Gutmaher1, 2 in Aleksandra Lobnik1, 2 Abstract and References

1 University of Maribor, Faculty of Mechanical Engineering, Smetanova 17, SI-2000 Maribor
2 IOS, Ltd., Institute for environmental protection and sensors, Beloruska 7, SI-2000 Maribor

Scientific Review
Received 01-2014 • Accepted 04-2014 

Corresponding author:
Prof. Dr. Aleksandra Lobnik
Tel.: +386 2 220 79 12
E-mail: lobnikaleksandra@gmail.com

 

Abstract

In the last decade, the advancement of nanotechnology and its application in several areas has been encouraging the global competition, and many industries need innovative solutions in order to provide better performance and enhanced value to their products. The development of high-functional nanomaterials represents a powerful source of potential innovation and progress in the European textile industry, which can only compete with the rest of the world with the products with added value. The development of functional and smart textiles with built-in advanced high-functional nanomaterials presents an important market niche with a high amount of built-in knowledge and use of modern technologies. The use of high-functional nanomaterials in textiles gives the new desired specific functional properties that can enhance the comfort and quality of life, safety, and can ease the control of health. Despite the fact that advanced high-functional nano-textile products give new functions, they shall keep all the essential features of textiles, such as wearability, flexibility, softness, elasticity, lightness, washability etc. Today, the textile industry mainly uses high-functional inorganic and polymeric nanoparticles, nanostructured materials, nanocomposites and nanofibres to achieve the functional properties such as antistatic, antimicrobial, self-cleaning, reinforcement etc. In this paper, we present in detail the nanomaterials that are most commonly used for the development of functional textiles with the emphasis on hydrophobic and hydrophilic properties, textiles with improved colouring and with increased resistance to colour fading, textiles used for UV-protection and fire-resistant textiles.

Keywords: nanomaterials, hydrophobic textiles, hydrophilic textiles, UV-protective textiles, flame retardant textiles, superhydrophobicity

 

References

 

  1. Paschen, Herbert, COENEN, Christopher, FLEISCHER, Torsten, GRUNWALD, Reinhard, OERTEL, Dagmar, REVERMANN, Christoph. Nanotechnologie. TA-Projekt. Endbericht. Karlsruhe: Büro für Technikfolgenabschätzung beim Deutschen Bundestag. TAB-Arbeitsbericht 92, 2003, 447.
  2. Yu, Minghua, GUOTUAN, Gu, WEI-DONG, Meng, FENG-LING, Qing. Superhydrophobic cotton fabric coating based on a complex layer of silica nanoparticles and perfluorooctylated quaternary ammonium silane coupling agent. Applied Surace Scence, 2007, 253(7), 3669–3673, doi: 10.1016/j.apsusc.2006.07.086.
  3. Xue, Chao-Hua, JIA, Shun-Tian, ZHANG, Jing, TIAN, Li-Qiang. Superhydrophobic surfaces on cotton textiles by complex coating of silica nanoparticles and hydrophobization. Thin Solid Films, 2009, 517(16), 4593–4598, doi: 10.1016/j.tsf.2009.03.185.
  4. CHEN, Xianqiong, LIU, Yuyang, LU, Haifeng, YANG, Hengrui, ZHOU, Xiang, XIN H. John. In-situ growth of silica nanoparticles on cellulose and application of hierarchical structure in biomimetic hydrophobicity. Cellulose, 2010, 17, 1103−1113, doi: 10.1007/s10570-010-9445-3.
  5. MONTAZER, Majid, PAKDEL, Esfandiar. Functionality of nano titanium dioxide on textiles with future aspects: Focus on wool. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2011, 12(4), 293−303, doi: 10.1016/j.jphotochemrev.2011.08.005.
  6. Yang, Hongying, Zhu, Sukang, Pan, Ning. Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and Fabrics by an improved Scheme, [dostopno na daljavo], [citirano maja 2013]. Dostopno na svetovnem spletu: <http://ningpan.net/publications/51-100/88%20polymer.pdf>.
  7. XUE, Chao-Hua, YIN, Wei, ZHANG, Ping, ZHANG, Jing, JI, Peng-Ting, JIA, Shun-Tian. UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 427, 7−12, doi: 10.1016/j.colsurfa.2013.03.021.
  8. XU, Bi, CAI, Zaisheng, WANG, Weiming, GE, Fengyang. Preparation of superhydrophobic cotton fabrics based on SiO2 nanoparticles and ZnO nanorods arrays with subsequent hydrophobic modification. Surface & Coatings Technology, 2010, 204(9-10), 1556–1561, doi: 10.1016/j.surfcoat.2009.09.086.
  9. Yadav, A., VIRENDRA, Prasad, KATHE, A. A., RAJ, Sheela, YADAV, Deepti, SUNDARAMOORTHY, C., VIGNESHWARAN, N. Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bulletin of Material Sciences, 2006, 29(6), 641−645.
  10. GONG, Maogang, XU, Xiaoliang, YANG, Zhou, LIU, Yuanyue, LV, Haifei, LV, Liu. A reticulate superhydrophobic self-assembly structure prepared by ZnO nanowires. Nanotechnology, 2009, 20(16), 65602−65609, doi: 10.1088/0957-4484/20/16/165602.
  11. EDNA, Richard, ARUNA, S. T., BASU, J. Bharathibai. Superhydrophobic surfaces fabricated by surface modification of alumina particles. Applied Surface Science, 2012, 258(24), 10199–10204, doi: 10.1016/j.apsusc.2012.07.009.
  12. CAI, Yibing, WU, Ning, WEI, Qufu, ZHANG, Kai, XU, Qiuxiang, GAO, Weidong, SONG, Lei, HU, Yuan. Structure, surface morphology, thermal and flammability characterizations of polyamideg/organic-modified Fe-montmorillonite nanocomposite fibers functionalized by sputter coating of silicon. Surface and Coatings Technology, 2008, 203, 264–270, doi: 10.1016/j.surfcoat.2008.08.076.
  13. Beyer, Günter. Short communication: Carbon nanotubes as flame retardants for polymers. Fire and Materials, 2002, 26(6), 291−293, doi: 10.1002/fam.805.
  14. Li, Dapeng, Sun, Gang. Coloration of textiles with self-dispersible carbon black nanoparticles. Dyes and Pigments, 2007, 72(2), 144−149, doi: 10.1016/j.dyepig.2005.08.011.
  15. SOM, Claudia, NOWACK Bernd, WICK, Peter, KRUG, Harald. Nanomaterialien in Textilien: Umwelt-, Gesundheits- und Sicherheits-Aspekte Fokus: synthetische Nanopartikel, 2010[dostopno na daljavo], [citirano junija 2013]. Dostopno na svetovnem spletu: <www.empa.ch/nanosafetextiles>.
  16. Som, Claudia, Halbeisen, Marcel, Köhler, Andreas. Integration von Nanopartikeln in Textilien Abschätzungen zur Stabilität entlang des textilen Lebenszyklus, 2009, [dostopno na daljavo], [citirano junija 2013]. Dostopno na svetovnem spletu: http://www.empa.ch/plugin/template/empa/*/78398/—/l=1.
  17. Bickel, Manfred, Som, Claudia. Nano textiles – Grundlagen und Leitprinzipien zur effizienten Entwicklung nachhaltiger Nanotextilien, 2011, [dostopno na daljavo], [citirano junija 2013]. Dostopno na svetovnem spletu: <www.empa.ch/plugin/template/empa/*/113719>.
  18. Lobnik, Andreja, LAKIĆ, Marijana, KOŠAK, Aljoša, TUREL, Matejka, KORENT UREK, Špela, GUTMAHER Andreja. Uvod v nanomateriale za uporabo v tekstilijah. Tekstilec, 2013, 56(2), 137–144.
  19. Wang, Shutao, Jiang, Lei. Defnition of Superhydrophobic States. Advanced Materials, 2007, 19(21), 3423–3424, doi: 10.1002/adma.200700934.
  20. Tadmor, Rafael. Line energy and the relation between advancing, receding and Young contact angles. Langmuir, 2004, 20(18), 7659–7664doi: 10.1021/la049410h.
  21. Wenzel, NRobert. Resistance of solid surfaces to wetting by water. Industrial and Engineering Chemistry, 1939, 28(8), 988–994, doi: 10.1021/ie50320a024.
  22. Chen, Wei, FADEEW, Y. Alexander, HSIEH, Meng Che, ÖNER, Didem, YOUNGBLOOD, Jeffrey, McCarthy, J. Thomas. Ultrahydrophobic and ultralyophobic surfaces: some comments and examples. Langmuir, 1999, 15(10), str. 3395–3399, doi: 10.1021/la990074s.
  23. Cassie, A. B. D., Baxter, SWettability of porous surfaces. Transactions of the Faraday Society, 1944, 40, 546–551, doi: 10.1039/TF9444000546.
  24. KHALIL-ABAD, Mohammad Shateri, YAZDANSHENAS, E. Mohammad. Superhydrophobic antibacterial cotton textiles. Journal of Colloid and Interface Science, 2010, 351(1), 293−298, doi: 10.1016/j.jcis.2010.09.003.
  25. WU, Hui, ZHANG, Rui, SUN, Yao, LIN, Dandan, SUN, Zhiqiang, PAN, Wei, DOWNS, Patrick. Biomimetic nanofiber patterns with controlled wettability. Soft Matter, 2008, 4, 2429−2433, doi: 10.1039/B805570J.
  26. Patankar, A. Neelesh. Mimicking the lotus effect: influence of double roughness structures and slender pillars. Langmuir, 2004, 20, 8209–8213, doi: 10.1021/la048629t.
  27. Cheng, Yang-Tse, Rodak, E. Daniel. “Is the lotus leaf superhydrophobic?” Applied Physics Leters, 2005, 86, 144101, doi: 10.1063/1.1895487.
  28. XUE, Chao-Hua, CHEN, Jia, YIN, Wei, JIA, Shun-Tian, MA, Jian-Zhong. Superhydrophobic conductive textiles with antibacterial property by coating fibers with silver nanoparticles. Applied Surface Chemistry, 2012, 258(7), 2468−2472, doi: 10.1016/j.apsusc.2011.10.074.
  29. Bae, Geun Yeol, MIN, Byung Gil, JEONG, Young Gyu, LEE, Sang Cheol, JANG, Jin Ho,  KOO, Gwang Hoe. Superhydrophobicity of cotton fabrics treated with silica nanoparticles and water-repellent agent. Journal of Colloid and Interfacee Science, 2009, 33, 170–175, doi: 10.1016/j.jcis.2009.04.066.
  30. SHIRGHOLAMI, A. Mohammad, KHALIL-ABAD, Mohammad Shateri, KHAJAVI, Ramin, YAZDANSHENAS, E. Mohammad. Fabrication of superhydrophobic polymethylsilsesquioyane nanonanostructures on cotton textiles by a solution-immersion process. Journal of Colloid and Interface Science, 2011, 359(2), 530−535, doi: 10.1016/j.jcis.2011.04.031.
  31. JOSHI, M., BHATTACHARYYA, A., AGARWAL, N., PARMAR, S. Nanostructured coatings for super hydrophobic textiles. Bulletin Materials Science, 2012, 35(6), 933−938.
  32. LOBNIK, Aleksandra, GUTMAHER, Andreja. Postopek za površinsko modifikacijo netkanih tekstilij s sol-geli : odločba o podelitvi patenta : patent št. SI21963 (A), 2006-08-31. Ljubljana: Urad Republike Slovenije za intelektualno lastnino, 2006. 
  33. SIMONČIČ, Barbara, TOMŠIČ, Brigita, VASILJEVIĆ, Jelena. Nanokompozitna apretura sol-gel. Tekstilec, 2013, 56(2), 159–165.
  34. VASILJEVIĆ, Jelena, TOMŠIČ, Brigita, JERMAN, Ivan, OREL, Boris, JAKŠA, Gregor, KOVAČ, Janez, SIMONČIČ, Barbara. Multifunctional superhydrophobic/oleophobic and flame-retardant cellulose fibers with improved ice-releasing properties and passive antibacterial activity prepared via the sol-gel method. Journal of Sol-gel Science and Technology, 2014, 1–15, doi: 10.1007/s10971-014-3294-8.
  35. SIMONČIČ, Barbara, HADŽIĆ, Samira, VASILJEVIĆ, Jelena, ČERNE, Lidija, TOMŠIČ, Brigita, JERMAN, Ivan, OREL, Boris, MEDVED, Jožef. Tailoring of multifunctional cellulose fibres with »lotus-effect« and flame retardant properties. Cellulose, 2014, 21, str. 595–605, doi: 10.1007/s10570-013-0103-4.
  36. LIU, Yunhong, LI, Guangji. A new method for producing “Lotus Effect” on a biomimetic shark skin. Journal of Colloid and Interface Science, 2012, 388(1), 235−242, doi: 10.1016/j.jcis.2012.08.033.
  37. ZHAO, Yan, XU, Zhiguang, WANG, Xungai, LIN, Tong. Superhydrophobic and UV-blocking cotton fabrics prepared by layer-by-layer assembly of organic UV absorber intercalated layered double hydroxides. Applied Surface Science, 2013, 286, 364–370, doi: 10.1016/j.apsusc.2013.09.092.
  38. Siegfried, Barbara. NanoTextiles: Functions, nanoparticles and commercial applications, Semester Thesis in the frame of the »Nanosafe-Textiles« project TVS Textilverband, Schweiz and Empa, December, 2007 [dostopno na daljavo], [citirano maja 2013]. Dostopno na svetovnem spletu: <http://www.empa. ch/plugin/template/empa/*/78337/—/l=1>.
  39. Hegemann, Dirk, Hossain, M. Mokbul, Balazs, J. Dawn. Nanostructured plasma coatings to obtain multifunctional textile surfaces. Progress in Organic Coatings, 2007, 58(2−3), 237−240, doi: 10.1016/j.porgcoat.2006.08.027.
  40. Motnikar, Ana. Varovanje tekstilnih izdelkov pri razstavljanju, [dostopno na daljavo], [citirano maja 2013]. Dostopno na svetovnem spletu: <http://www.etno-muzej.si/files/etnolog/pdf/0354-0316_6_motnikar_varovanje.pdf>
  41. SCHINDLER, D. Wolfgang, HAUSER, J. Peter. Chemical finishing of textiles, Cambridge, England : Woodhead Publishing Limited, 2004, 256.
  42. Mahltig, B, Haufe, H., BÖttcher, H. Functionalisation of textiles by inorganic sol-gel coatings. Journal of Materials Chemistry, 2005, 15, 4385−4398.
  43. MONTAZER, Majid, PAKDEL, Esfandiar, MOGHADAM, Mohammad Bameni. The role of nano colloid of TiO2 and butane tetra carboxylic acid on the alkali solubility and hydrophilicity of proteinous fibers. Colloids and Surfaces A: Physicochemical and Engineering. Aspects, 2011, 375, 1–11, doi: 10.1016/j.colsurfa.2010.10.051.
  44. Krogman, C. K., ZACHARIA, N. S., SCHROEDER, S., HAMMOND, P. T. Automated process for improved uniformity and versatility of layer-by-layer deposition. Langmuir, 2007, 23(6), 3137−3141, doi: 10.1021/la063085b.
  45. Vigneshwaran, N., KATHE A. A., VARADARAJAN, P. V., NACHANE, R. P., BALASUBRAMANYA, R. H. Functional finishing of cotton fabrics using silver nanoparticles. Journal of nanoscience and nanotechnology, 2007, 7(6), 1893–1897.
  46. Čufar, Andreja, Kristl, Julijana. Varovalni pripravki za sončenje 1.del: UV sevanje, varovalni mehanizmi in UV filtri. Farmacevtski Vestnik, 1994, 45, 71–87.
  47. Wolf, Ronni, WOLF, Danny, MORGANTI, Pierfrancesco, RUOCCO, Vincenzo. Sunscreens. Clinics in Dermatology, 2001, 19, 452–459.
  48. Bertrand, Faure, SALAZAR-ALVAREZ, German, AHNIYAZ, Anwar, VILLALUENGA, Irune, BERRIOZABAL, Gemma, DE MIGUEL, R. Yolanda, BERGSTRÖM, Lennart. Dispersion and surface functionalization of oxide nanoparticles for transparent photocatalytic and UV-protecting coatings and sunscreens. Science and Technology of Advanced Materials, 2013, 14, 1-23, doi: 10.1088/1468-6996/14/2/023001.
  49. Serpone, Nick, Dondi, Daniele, Albini, Angelo. Inorganic and organic UV filters: Their role and Efficacy in sunscreens and suncare products. Inorganica Chimica Acta, 2007, 360(3), 794–802, doi: 10.1016/j.ica.2005.12.057.
  50. Ohama, Yoshihiko, Van Gemert, Dionys. Application of titanium dioxide photocatalysis to construction materials, State-of-the-Art Report of the RILEM Technical Committee 194–TDP. New York : Springer, 2011, 48.
  51. Serpone, N., Lawless, D., Khairutdinov, R. Subnanosecond relaxation dynamics in TiO2 colloidal sols. Journal of Physical Chemistry, 1995, 99, 16655–16661, doi: 10.1021/j100045a027.
  52. Lawless, D., Serpone, N., Meisel, D. Role of OH radicals and trapped holes in photocatalysis, A pulse radiolysis study. Journal of Physical Chemistry, 1991, 95(13), 5166–5170.
  53. Chen, Haihan, Nanayakkara, E. Charith, Grassian, H. Vicki. Titanium Dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 2012, 112, 5919–5948, doi: 10.1021/cr3002092.
  54. RADETIĆ, Maja. Functionalization of textile materials with TiO2 nanoparticles. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2013, 16, 62–76, doi: 10.1016/j.jphotochemrev.2013.04.002.
  55. OJSTERŠEK, Alenka, KLEINSCHEK, Stana Karin, FAKIN, Darinka. Characterization of nano-sized TiO2 suspensions for functionalized modification of polyester fabric. Surface and coatings technology, 2013, 226, 68–74, doi: 10.1016/j.surfcoat.2013.03.037.
  56. ERDEM, Nilüfer, ERDOGAN, Umit Halis, CIRELI, Aysun Aksit, ONAR, Nurhan. Structural and ultraviolet-protective properties of nano-TiO2-doped polypropylene filaments. Journal of Applied Polymer Science, 2010, 115, 152–157, doi: 10.1002/app.30950.
  57. LEE, Kyung, LEE, Seungsin. Multifunctionality of poly(vynil alcohol) nanofiber webs containing titnium dioxide. Journal of Applied Polymer Science, 2011, 124, 4038–4046, doi: 10.1002/app.34929.
  58. mihailović, darka, ŠAPONJIĆ, Zoran, VODNIK, Vesna, POTKONJAK, Branislav, JOVANČIĆ, Petar, NEDELJKOVIČ, M. Jovan, RADETIĆ, Maja. Multifunctional PES fabrics modified with colloidal Ag and TiO2 nanoparticles. Polymers for Advanced Technologies, 2011, 22(12), 2244–2249, doi: 10.1002/pat.1752.
  59. KATHIRVELU, S., D’SOUZA, Louis, DHURAI, Bhaarathi. UV protection finishing of textiles using ZnO nanoparticles. Indian Journal of Fibre & Textile Research, 2009, 34, 267–273.
  60. BROASCA, G., BORCIA, G., DUMITRASCU, N., VRINCEANU, N.  Characterization of ZnO coated polyester fabrics for UV protection. Applied Surface Science, 2013, 279, 272–278, doi: http://dx.doi.org/10.1016/j.apsusc.2013.04.084.
  61. ÇAKIR, Acar Burç̧in, BUDAMA, Leyla, TOPEL, Önder, HODA, Numan. Synthesis of ZnO nanoparticles using PS-B-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2012, 414, 132–139, doi: 10.1016/j.colsurfa.2012.08.015.
  62. Vigneshwaran, Nadanathangam, KUMAR, Sampath, KATHE, A. A., VARADARAJAN, P. V., PRASAD, Virendra. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology, 2006, 17(20), 5087−5095, doi: 10.1088/0957-4484/17/20/008.
  63. HEBEISH, Ali, SHARAF, S., FAROUK, A. Utilization of chitosan nanoparticles as a green finishing in multifunctionalization of cotton textile. International Journal of Biological Macromolecules, 2013, 60, 10–17, doi: 10.1016/j.ijbiomac.2013.04.078.
  64. LIANG, Shuyu, NEISIUS, N. Matthias, GAAN, Sabyasachi. Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings, 2013, 76(11), 1642–1665, doi: 10.1016/j.porgcoat.2013.07.014.
  65. Hornsby, P. R. The application of fire-retardant fillers for use in textile barrier materials. V Multifunctional Barriers for Flexible Structures. Edited by Sophie Duquesne, Carole Magniez and Giovanni Camino. New York : Springer, 2007,  1–22.
  66. Gawish, S. M., RAMADAN, A. M., CORNELIUS, C. E., BOURHAm, M. A., MATTHEWS, S. R., McCORD, M. G., WAFA, D. M., BREIDT, F. New functionalities of PA6,6 fabric modified by atmospheric pressure plasma and grafted glycidyl methacrylate derivatives. Textile Research Journal, 2007, 77(2), 92–104, doi: 10.1177/0040517507076747.
  67. DU, Longchao, XU, Guoyong, ZHANG, Yuchuan, QIAN Jiasheng, CHEN, Jinyang. Synthesis and properties of a novel intumescent flame retardent (IFR) and its applications in halogen-free flame flame retardant ethylene propylene diene terpolymer (EPDM). Polymer-Plastics Technology and Engineering, 2011, 50(4), 372–378, doi: 10.1080/03602559.2010.543224.
  68. LAOUTID, F., BONNAUD, L., ALEXANDRE, M., LOPEZ-CUESTA J. M., DUBOIS, Ph. New prospects in flame retardant polymer materials: From fundamentals to nanocomposites. Material Science and Engineering: R: Reports, 2009, 63(3), 100–125, doi: 10.1016/j.mser.2008.09.002.
  69. WEIL, D. Edward, LEVCHIK, V. Sergei. Flame retardants in commercial use or advanced development in polyurethanes. V Flame retardants for plastics and textiles. New York, ZDA : HANSER Publications, 2009.
  70. QU, Hongqiang, Wu, Weihong, ZHENG, Yanju, XIE, Jixing, XU, Jianzhong. Synergistic effects of inorganic tin compounds and Sb2O3 on thermal properties and flame retardancy of flexible poly(vinyl chloride). Fire Safety Journal, 2011, 46, 462–467, doi: 10.1016/j.firesaf.2011.07.006.
  71. KILIARIS, P., PAPASPYRIDES, C. D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Progress in Polymer Science, 2010, 35(7), 902–958, doi: 10.1016/j.progpolymsci.2010.03.001.
  72. KUO, Shiao-Wei, CHANG, Feng-Chih. POSS releated polymer nanocomposites. Progress in Polymer Science, 2011, 36(12), 1649–1696, doi: 10.1016/j.progpolymsci.2011.05.002.
  73. HRIBERNIK, Silvo, SMOLE Majda Sfiligoj, KLEINSCHEK, Karin Stana, BELE, Marjan, JAMNIK, Janez, GABERSCEK, Miran. Flame retardant activity of SiO2-coated regenerated cellulose fibers. Polymer degradation and stability, 2007, 92(11), 1957–1965, doi: 10.1016/j.polymdegradstab.2007.08.010.
  74. Bourbigot, Serge, VANDERHART, L. David, GILMAN, W. Jeffrey, BELLAYER, Severine, STRETZ, Holly, PAUL, R. Donald. Solid state NMR characterization and flamability of styrene acrylonitrile copolymer montmorillonite nanocomposite. Polymer, 2004, 45, 7627−7638, doi: 10.1016/j.polymer.2004.08.057.
  75. ZhanG, Sheng, HORROCKS, A. Richard, HULL, Richard, KANDOLA, K. Baljinder. Flammabillity, degradation and structural characterization of fibre-forming polypropylene containing nanoclay-flame retardant combinations. Polymer Degradation and Stability, 2006, 91(4), 719−725, doi: 10.1016/j.polymdegradstab.2005.05.023.
  76. Devaux, Eric, Rochery, Maryline, Bourbigot, Serge. Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire and Materials, 2002, 26(4−5), 149−154, doi: 10.1002/fam.792.
  77. Marosi, Gy., MARTON, A., SZCP, A., CSONTOS, I., KCSZCI, S., ZIMONYI, E., TOTH, A., ALMCRAS, X., LE BRAS, M. Fire retardancy effect of migration in polypropylene nanocomposites induced by modified interlayer. Polymer Degradation and Stability, 2003, 82, 379−385, doi: 10.1016/S0141-3910(03)00223-4.
  78. HUANG, Guobo, LIANG, Huading, WANG, Xu, GAO, Jianrong. Poly(acrylic acid)/clay thin film assembled by layer-by-layer deposition for improving the flame retardancy properties of cotton. Industrial and Engineering Chemistry Research, 2012, 51(38), 12299–12309, doi: 10.1021/ie300820k.
  79. LI, Yu-Chin, SCHULZ, Jessica, MANNEN, Sarah, DELHOM, Chris, CONDON, Brian, CHANG, SeChin, ZAMMARANO, Mauro, GRUNLAN, C. Jamie. Flame Retardant behavior of polyelectrolyte-clay thin film assemblies on cotton fabric. ACS Nano, 2010, 4, 3325–3337, doi: 10.1021/nn100467e.
  80. APAYDIN, Kadir, LAACHACHi, Abdelghani, BALL, Vincent, JIMENEZ, Maude, BOURBIGOT, Serge, TONIAZZO, Valerie, RUCH, David. Polyallylamine-montmorillonite as super flame retardant coating assemblies by layer-by-layer deposition on polyamide. Polymer Degradation and Stability, 2013, 98(2), 627–634, doi: 10.1016/j.polymdegradstab.2012.11.006.
  81. Zhang, Sheng, Horrocks, A. Richard. A review of flame retardant polypropylene fibres. Progress in Polymer Science, 2003, 28(11), 1517−1538, doi: 10.1016/j.progpolymsci.2003.09.001.
  82. Bourbigot, Serge, Devaux, Eric, Flambard, Xavier. Flammabillity of polyamide-6/clay hybrid nanocomposite textiles. Polymer degradation and Stability, 2002, 75(2), 397−402, doi: 10.1016/S0141-3910(01)00245-2.

 


 

153  Influence of Finishing and Water on Functioning of Passive UHF RFID Tags on Different Fabrics

        • Bojana Hvala, Barbara Simončič and Tadeja Muck Abstract and References

University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Textiles, SI-1000 Ljubljana 

Original Scientific Paper
Received 04-2014 • Accepted 05-2014 

Corresponding author:
Prof. Dr. Tadeja Muck
Tel.: +386 1 200 32 84
E-mail: tadeja.muck@gmail.com

 

Abstract

The research focuses on the area of interactive radio frequency identification technology (RFID) and its use in the tagging of textile and garments. The research aim was to take into consideration the influence of water and water-repellent finishing in a real environment on the operability of passive ultra-high frequency (UHF) RFID tags on different types of fabric. The tags reading rate on dry, wet, non-repellent and water-repellent finished cotton and polyester fabrics was studied. The water- and oil-repellent nanocomposite sol-gel finishing with fluorocarbon functional precursors was applied on fabrics as well as on tags. The reading frequency depending on the distance between an RFID tag or tags, respectively, fixed on fabrics and the reader antenna was measured. It was found that water has a negative impact on the reading rate of UHF RFID tags, since it absorbs the radio frequency waves. Wetting has a larger effect on cotton than on polyester fabrics. The tags positioned on the first fabric layer show the best results. The positioning of three tags successively one after another between layers of fabric causes a shadowing effect and reduction of reading rate and reading accuracy. With the application of the water and oil-repellent nanocomposite sol-gel finishing, the effect of wetting is reduced and consequently, tags responsiveness increases. It was also found out that finishing has a positive impact on the tag readability in the near field, i.e. on average the maximum reading length, as it has on the increase of tag responsiveness if they are positioned successively on the fabrics in the manner of overlapping.

Keywords: UHF RFID tag, Gen 2 standard, water- and oil-repellent finishing, cotton fabric, polyester fabric

 

References

  1. OGRINC, Bernard. RFID v sistemih sledenja proizvodov : diplomsko delo. Ljubljana, 2006, 63.
  2. BALOH, Marko. Analiza vpliva materialov pri označevanju živil z nalepkami RFID : diplomsko delo. Ljubljana, 2011, 49.
  3. BREZNER, Renato. Uporaba radiofrekvenčne identifikacije (RFID) v Slovenski vojski : diplomsko delo. Celje, 2009, 48.
  4. HUNT, V. Daniel, PUGLIA, Albert, PUGLIA, Mike. RFID – A Guide to Radio Frequency Identification. New Jersey : A John Wiley & Sons, Inc., Publication, 2007, [dostopno na daljavo], [citirano 22. 5. 2012]. Dostopno na svetovnem spletu: <ftp://tor.ntu-kpi.kiev.ua/pub/pershin/LIBRARY/BOOKS%20AND%20GOST/BOOKS/_ENGLISH/RFID%20A%20Guide%20To%20Radio%20Frequency%20Identification.pdf>.
  5. GS1 Slovenija. Vse o nas [dostopno na daljavo], [citirano 1. 6. 2012]. Dostopno na svetovnem spletu: <http://www.gs1/1/vse-o-nas.aspx>.
  6. BOGATAJ, Urška, MAČEK, Marijan, MUCK, Tadeja, KLAJNŠEK GUNDE, Marta. Readability and modulated signal strength of two different UHF RFID tags on different packaging. Packaging technology and science, 2012, 25(7), 373−384, doi: DOI: 10.1002/pts.988.
  7. Grafika študijsko gradivo [dostopno na daljavo], [citirano 17. 5. 2012]. Dostopno na svetovnem spletu: <http://www2.grafika.ntf.uni-lj.si/uploads/media/03_RFID.pdf>.
  8. KAVČIČ, Urška, PIVAR, Matej, ĐOKIĆ, Miloje, GREGOR-SVETEC, Diana, PAVLOVIČ, Leon, MUCK, Tadeja. UHF RFID tags with printed antennas on recycled papers and cardboards. Materiali in tehnologije, 2014, 48(2), 261−267.
  9. BOLIĆ, Miodrag, SIMPLOT-RYL, David, STOJMENOVIĆ, Ivan. RFID Systems: Research Trends and Challenges. John Wiley & Sons Ltd., 2010, 543.
  10. HARDGRAVE, C. Bill. Item-level RFID for apparel: The dillards initiative, 2009, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://itri.uark.edu/91.asp?download=Yes>.
  11. MILES, S. Rebecca. Item–level for apparel/footwar: The JC Penney RFID innitiative, 2010, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://itri.uark.edu/91.asp?download=Yes>.
  12. O’CONNOR, Mary Catherine. Bloomingdale’s tests item-level RFID, 2009, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.rfidjournal.com/article/view/5160/1>.
  13. SWEDBERG, Claire. American apparel adds RFID to two more stores, 2010, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.rfidjournal.com/article/view/7313/1>.
  14. WESSEL, Rhea. Indian conglomerate ITC focuses on RFID expansion, 2008, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.rfidjournal.com/article/articleview/4449/1/1/>.
  15. O’CONNOR, Mary Catherine. RFID trims costs for retailer of Lacoste, CK, Burberry, 2009, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.rfidjournal.com/article/view/4626/1>.
  16. Roll out of avery dennison RFID solution for shirtmaker seidensticker, 2009, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.ibmd.averydennison.com/about/news-rfid-solution-for-seidensticker.asp>.
  17. SWEDBERG, Claire. Crystal group uses RFID tags to track garment production, 2007, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu:
  18. <http://www.rfidjournal.com/article/view/3788/1>.
  19. RFID Profile: Metro Groups Galeria Kaufhof, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.impinj.com/Applications/Case_Studies.aspx#>.
  20. CROMHOUT, B. David, HARDGRAVE, C. Bill, ARMSTRONG J. Deborah. RFID Item-level tagging for apparel/footwear: feasibility study, 2008, 6, 7.
  21. SUBSTRATES: Background [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://people.ccmr.cornell.edu/~cober/MSE5420/page2/files/iNEMISubstrateFlex0808.pdf>.
  22. SCHILTHUIZEN, Steven. Smart textiles enabled by nanotechnology, RFID and sensor technology, 2009, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.scint.nl/docs/Smarttextilesscint.pdf>.
  23. RFID world, fabric detection possible in new RFID enabled smart washing machine, 2012, [dostopno na daljavo], [citirano 29. 5. 2012]. Dostopno na svetovnem spletu: <http://www.rfidworld.ca/fabric-detection-possible-in-new-rfid-enabled-smart-washing-machine/808>.
  24. SINHG, S. P., McARTNEY, M., SINGH, Jay, CLARKE, R. RFID research and testing for packages of apparel, consumer goods and fresh produce in the retail distribution environment. Packaging Technology and Science, 2008, 21(2), 91–102, doi: 10.1002/pts.782.
  25. Mc CARTHY, Ultan, AYALEW, Gashaw, BUTLER, Francis, McDONNELL, Kevin, WARD, Shane. The effects of item composition, tag inlay design, reader antenna polarization, power and tranponder orientation on the dynamic coupling efficiency of backscatter ultra high frequency rdio frequency identification. Packaging Technology and Science, 2009, 22(4), 241–248, doi: 10.1002/pts.849.
  26. CLARKE, Robert, TWEDE, Diana, TAZELAAR R. Jeffrey, BOYER K, Kenneth. Radio frequency identification (RFID) performance: The effect of tag orientation and package contents. Packaging Technology and Science, 2006, 19(1): 45–54, doi: 10.1002/pts.714.