Čiščenje odpadnih voda iz industrijske pralnice z uporabo membranske tehnologije

Industrijske in obrtna pralnice onesnažujejo okolje z odpadno vodo, ki nastane po pranju različnih vrst perila. Predpisi in uredbe za odvajanje odpadnih voda iz industrijskih in obrtnih pralnic v komunalne čistilne naprave ali pa iz tok neposredno v reko so čedalje strožji, kar morajo upoštevati tudi pralnice. Sedanje sodobne čistilne naprave vključujejo poleg čiščenja vode še možnost ponovne uporabe vode. Zato dosego tega cilja je najprimernejša membranska filtracija.

V proračunu smo podrobno prikazali proces čiščenja vode iz pralnice z ultrafiltracijo in reversno osmozo. Rezultati analiz odpadne vode so pokazali, da so se vsi merjeni parametri znižali v tolikšni meri, da ima voda zelo visoko kakovost in z njenim rekleščenjem pridobimo do 90% sveže vode. Ključne besede: odpadne vode iz industrijskih pralnic, membranske tehnologije, ultrafiltracija, reversna osmoza

Treatment of the Laundry Wastewater by Using the Membrane Technology

Industrial laundries are polluting the environment with wastewater when washing different goods. In order to meet legislative requirements and bring treated water in communal systems or direct into the river, a proper modern treatment is necessary. The most promising water treatment are membrane processes, which give the opportunity for water recycling.

Detailed analyses of laundry wastewater after membrane treatment using ultrafiltration following by reverse osmosis unit are presented. Results showed a great improvement in wastewater quality and therefore, it can be recycled and up to 90% of fresh water can be saved.

Keywords: laundry wastewater, membrane technology, ultrafiltration, reverse osmosis

1.0 UVOD

Pralnice in drugi industrijski onesnaževalci so z veljavno zakonodajo in visokimi takunami za onesnaževanje voda prisiljeni zmanjševati količine odpadnih voda. Onesnaženost odpadnih voda je odvisna od izvora perila, umazanosti perila in postopka pranja, povzročajo pa jo raztopljene organske in anorganike snovi, neraztopljeni in strupene snovi. V odpadni vodi so tudi mikroorganizmi, ki razgrajujejo organske snovi in povzročajo razkorj.

V Sloveniji deluje 140 pralnic, kjer perejo različne vrste perila, od delovnih oblek, bolnišničnega perila do hotelskega posteljnega perila, brisače, prte ipd [1]. Vrednosti za kemijsko potrebo po kisiku KPK v odpadnih vodah po pranju delovnih oblek se gibljejo od 1.200 mg/L pa vse do 20.000 mg/L kisika, medtem ko je KPK v odpadnih vodah kjer se pere bolnišnično perilo, nižji in znaša od 400 do 1.200 mg/L kisika. V odpadnih vodah pralnic, kjer perejo delovne obleke, najdemo mineralna olja, težke kovine in druge škodljive snovi, medtem ko so v odpadni vodi,
kjer se je pralo bolnišnično perilo, predvsem maščobe, ostanki živil, kri in urin [2].

Vse vrste pralnic se bodo morale prilagoditi zakonodaji o predpisih in uredbah za odvajanje odpadnih voda iz industrijskih in obrtnih pralnic v komunalne čistilne naprave ali pa iztok neposredno v reko. V zadnjih 10 do 15 letih se je razvijala in spremnjava tehnika in cilji čiščenja odpadne vode. V preteklosti so se uporabljale čistilne naprave, ki so omogočale čiščenje odpadne vode do predpisanih mejnih vrednosti, današnje, sodobne naprave, pa vključujejo ponovno uporabo vode - recikliranje. Za obdelavo odpadne vode iz pralnic izbiramo med različnimi metodami: sedimentacija, flokulacija [3], nevektarizacija, flokulacija, membranska filtracija (mikro-, ultra-, nanofiltracija, reverzna osmoza) [4] ter biološka obdelava (aerobna in anaerobna, pri katerih je mogoče čiščenje s pritirano ali razpršeno biomaso), adsorpcija na aktivnem oglju, evaporačija in kombinacije teh metod.

V laboratorskem merilu smo v dosedanjih raziskavah odpadno vodo iz industrijskih pralnic čistili s flokulacijo, z adsorpcijo na aktivnem oglju (GAC) [3] in napredno oksidacijsko metodo (H₂O₂/UV) [4]. Z uporabo GAC in H₂O₂/UV smo dosegli takšno kakovost prečiščene vode, da ustrez na uredbam za emisijo v okolje. Čeprav se je vrednost KPK znižala za 93 %, BPK₅ in vsebnost anionskih tenzidov za 95 % ter fosfatov za 90 %, pa vendar z nobeno od naštetih metod ne dosežemo takšne kakovosti, da bi lahko vodo reciklirali [3, 4]. Navedene tehnologije so primerne za pralnice z nizko porabo vode, saj postopek recikliranja ni ekonomsko upravičen. Na podlagi tega smo z nadaljnjo raziskavo izvedli čiščenje odpadne vode iz pralnice z veliko porabo vode z membransko tehnologijo.

Cilj raziskave je bil obdelati odpadno vodo iz industrijske pralnice tako, da rezultati meritev ustrezo veljavni zakonodaji v Republiki Sloveniji, hkrati pa raziskati možnosti recikliranja prečiščene vode in vzpostavitev zaprtega pretoka vode med pranjem.

2.0 TEORETIČNI DEL

2.1 Osnove pranja in pralnih sredstev

Po definiciji je pranje proces odstranjevanja nečistoč in mikroorganizmov iz tekstilij, ki poteka v vodnem mediju ob dodatku pralnih sredstev. Po Sinneru so pri pranju pomembni štirje dejavniki: temperatura pranja, čas pranja, mehanska obdelava in kemična sredstva. Vsaka sprememba enega dejavnika zahteva spremembo drugih dejavnikov, da ostane učinkovitost pranja nespremembena. Voda deluje kot topilo ali nosilni medij, vendar ne zadostuje za učinkovito pranje, saj ji primanjkujejo tri pomembne lastnosti, ki so potrebne za učinkovito tekstilijo [5]:

1. voda ne odstranjuje netopnih madežev (olja, maščobe);
2. nima sposobnosti, da prepreči redepozicijo nečistoč najaj na tekstilijo, in
3. nima razkuževalnega učinka.

Zato učinkovitost pranja izboljšamo s pralnimi sredstvi. To so snovi, ki dosežejo optimalni pralni učinek pri največjem možnem varovanju tekstilij. Sestavine pralnih sredstev se morajo skladati z evropskimi zakoni o obremenitvi okolja [6]. Osnovne sestavine pralnih sredstev so:

1. tenzidi (10 % do 20 %), ki so anionske in neionske narave;
2. ogrodne snovi (20 % do 40 %), ki so sekvestrirna sredstva, tvorci oborin, ionski izmenjevalci;

<table>
<thead>
<tr>
<th>Sestavine pralnih sredstev</th>
<th>Predstavniki</th>
<th>Delež (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glavne sestavine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anionski tenzidi</td>
<td>Alkilbenzensulfonat</td>
<td>5–30</td>
</tr>
<tr>
<td>Neionski tenzidi</td>
<td>Maščobni alkohol</td>
<td></td>
</tr>
<tr>
<td>Ogrodne substance</td>
<td>Fosfati, zeoliti, NTA</td>
<td>20–40</td>
</tr>
<tr>
<td>Alkalije</td>
<td>Soda, metasilikat</td>
<td>10–30</td>
</tr>
<tr>
<td>Pomožne sestavine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stabilizator belilnega sredstva</td>
<td>EDTA, fosfonati</td>
<td>0,2–2</td>
</tr>
<tr>
<td>Aktivator belilnega sredstva</td>
<td>TAED, Nitrijev silikat</td>
<td>3–5</td>
</tr>
<tr>
<td>Encim</td>
<td>Proteaz</td>
<td></td>
</tr>
<tr>
<td>Preprečevalec redepozicije nečistoč</td>
<td>Karboksimetil celuloza</td>
<td>0,5–2</td>
</tr>
<tr>
<td>Inhibitor perjenja</td>
<td>Alkil fosforni kisli estri</td>
<td>0,2–2</td>
</tr>
<tr>
<td>Optični belliec</td>
<td>Stiben, derivati pirazolina</td>
<td>0,1–1</td>
</tr>
<tr>
<td>Parfumi, dišave</td>
<td>–</td>
<td>0,1–0,2</td>
</tr>
<tr>
<td>Pomožna sredstva</td>
<td>Glauberjava sol</td>
<td>ca. 5</td>
</tr>
</tbody>
</table>

168

TEKSTILEC, 2004, let. 47, št. 5-6, str. 167–174
3. belilna sredstva (15 % do 25 %), od katerih najpogosteje uporabljamo natrijev perborat;
4. pomožna sredstva (X %), ki jih sestavljajo optični belilci, regulatorji penjenja, sredstva proti sičenju in koroziji, encimi, razkuževalna sredstva, dišave, barvila itd.

Najpomembnejše so površinsko aktivne snovi ali tenzidi, ki imajo osnovno nalogo čiščenja, in ogrodne snovi, ki povečajo učinkovitost tenzidov. Razvoj na področju pralnih sredstev je industriji ponudil celo vrsto pomembnih tenzidov, ki so jih kombinirali z ogrodnimi snovmi, da so izboljšali njihovo učinkovitost med pranjem. Postopoma so dodajali tudi komponente, kot so: belilna sredstva, razkuževalna sredstva, sredstva za preprečevanje redepozicije itd. [5] V preglednici 1 je prikazana osnovna sestava industrijskih pralnih sredstev [2].

Današnji način pranja poteka v sodobnih programiranih pralnih strojih s pomočjo najosnovnejših, okolju prijaznih pralnih sredstev [5, 6].

2.2 Membranska tehnologija

Membranska tehnologija se zelo hitro razvija, saj je čedalje pomembnejša pri čiščenju odpadnih voda in ponovni uporabi voda. stroški za čiščenje voda se nenehno zmanjšujejo, hkrati pa možnost uporabe te tehnologije močno narašča. Ena glavnih prednosti membranskih procesov je, da sta koncentracija in separacija doseženi brez spremembe agregatnega stanja, brez uporabe kemikalij in termične energije, kar naredi proces energijsko učinkovitejši. Nekateri separacijski procesi in membranski procesi so prikazani na sliki 1 [7].

Membrana predstavlja separacijsko mejo, ki omogoča specifičnim kemikalijam, da so fizikalno ločene ali koncentrirane. Pri tem nastajajo drogenci produkti iz zelo razreščenih vodnih tokov (slika 2).

Napajalna raztopina, ki jo vodimo v membranski modul, se loči v permeat, ki prehaja skozi membrano in to je očiščena voda, ter retentat (tudi koncentrat), ki ga membrana zavrne, se ne prečisti in to je odpadna voda. Permeat lahko recikliramo in ponovno uporabimo (npr. za pranje). Različni membranski procesi, kjer je golinna sila tlak, se delijo glede na velikost in posledično vrsto delcev, ki jih membrana zadržuje (preglednica 2).

Z velikostjo uporabljenega tlaka in prepuščine je membrana (permeabilnost) je dovoljen pretok snovi skozi membrano. Separacijske lastnosti membran, še posebej tistih za ultrafiltracijo (UF), se določajo z merjenjem polimerov različnih velikosti (dekstrini, PEG ali proteini) s točno določeno molsko maso molekul, ki jih membrana prepušča ali zadrži. Pri tem dobimo t.i. vrednost
NMWC "Nominal Molecular Weight Cut off". Vrednosti NMWC so različne in so odvisne od materiala, iz katerega je napravljena membrana, načina pravljene membraane, testnega medija in oblike testnih molekul [8].

Membranski procesi imajo številne prednosti pred konvencionalnimi tehnologijami obdelave odpadnih voda: boljša kakovost obdelane vode, fleksibilnost procesa in manjša poraba energije. Sta pa tudi dve pomanjkljivosti, vicer: odlaganje nastalih sekundarnih snovi in zamašitev, ki vodi k trajnim tehničnim težavam ter ekonomski izgubi. Vendar je mogoča kombinacija konvencionalnih in membranskih tehnologij, s čimer zmanjšamo ma-

šenje in podaljšamo življenjsko dobo membran [9].

Zamašitev membran je na splošno določena z zmanjšanjem pretoka permeata skozi membrano, koncentracijsko polarizacijo in nastajanjem plasti gela. Koncentracijska polarizacija in nastajanje plasti gela sta mehanizma, ki zmanjšujejo pretok skozi membrano. Posledica koncentracijske polarizacije je zadrževanje sestavin na membrani. Visoka koncentracija delcev v bližini membrane zmanjša pretok. Višja koncentracija na strani napajalne raztopine povzroča spremembo osmotskega tlaka, ki je nasproten zunanjemu uporabljeni razliki tlaka. Zaradi tega se zmanjša razlika tlaka skozi membrano in zmanjša se tok raztopine. Plast gela lahko nast-

Slika 2: Princip membranske tehnike «cross flow»

Preglednica 2: Membranski procesi, kjer je gonila sila tlak

<table>
<thead>
<tr>
<th>Vrsta procesa</th>
<th>Velikost delcev</th>
<th>Velikost tlaka (bar)</th>
<th>Vrsta delcev</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mikrofiltracija</td>
<td>0,1–5 μm</td>
<td>0,1–2,0</td>
<td>bakterije, suspendirani delci, kvasovke</td>
</tr>
<tr>
<td>Ultrafiltracija</td>
<td>10–100 nm</td>
<td>1,0–5,0</td>
<td>proteini, polimeri</td>
</tr>
<tr>
<td>Nanofiltracija</td>
<td>1–0 nm</td>
<td>5,0–20</td>
<td>amino kisline, oligosaharidi</td>
</tr>
<tr>
<td>Reverzna osmoza</td>
<td>< 1 nm</td>
<td>10–100</td>
<td>sladkorji, soli</td>
</tr>
</tbody>
</table>

Slika 3: Princip povratnega toka
ne, če koncentracija posameznih komponente zelo naraste, tako da so presežene meje topnosti. Posledično nastane usedinja na vrhu membrane, ki deluje kot hidračlični upor. Rezultat takšnega delovanja je zmanjšanje pretoka skozi membrano.

Zamašitev membrane je lahko tudi ireverzibilna, če sestavine plasti gela reagirajo druga z drugo in pri tem nastaja na vrhu membrane gosta, trda zmes, ki jo težko odstranimo. Na delovanje membrane vpliva absorpcija sestavin v porah steni. Premer por se zmanjšuje, pri tem pa se povečuje hidračlični odpor. Rezultat tega je manjši pretok.

Uspešna tehnika, ki se lahko uporabi v tem primeru, je čiščenje s povratnim tokom [14, 10], kjer se vključuje različna tlakov v kratkem časovnem obdobju (slika 3). Čiščenje s povratnim tokom pomeni izmenično naraščanje in upadanje tlaka s spreminjanjem smeri toka raztopine. Na sliki 3a je prikazan tok stisnjene tekoče tekoče, ki se v določenem časovnem intervalu (2−3 min.) vzdrži in ima nasprotno smer kot permeat. Princip čiščenja s povratnim tokom je prikazan na sliki 3b. Tok permeata preusmerimo v smer vhodnega toka, s čimer se površinske membrane odstranimo sedenine delce.

Možnosti čiščenja membran so odvisne od tipa začinitve. Če je zamašitev reverzibilna, kot je pri nastajanju gela, je uporabno izpiranje s čisto vodo. Pri ireverzibilnem zamašitvi je treba uporabiti druge tehnike, kot so izpiranje z močno alkalin ali kislo raztopino pri višji temperaturi. Vpliv teh mehanizmov na padec pretoka je odvisen od naslednjih dejavnikov: velikost por membran, raztopljene snovi, razporeditev delcev vrste membrane in operativnih pogojev [10, 11].

Preglednica 3: Parametri, standardne metode, aparati za laboratorijske analize, ki jih zajema analiza odpadnih vodo iz pralnic in MDK za izpust v reke.

<table>
<thead>
<tr>
<th>Parametri</th>
<th>MDK za iztok v vodo</th>
<th>MDK za iztok v kanalizacijo</th>
<th>Standard</th>
<th>Metoda / Aparat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura (°C)</td>
<td>30</td>
<td>40</td>
<td>DIN 38404-C4</td>
<td>termometar</td>
</tr>
<tr>
<td>pH − vrednost</td>
<td>6,5−9,0</td>
<td>6,5−9,5</td>
<td>SIST ISO 10523</td>
<td>Elektrokemljo/pH-meter Iskra MA 5740</td>
</tr>
<tr>
<td>Neraztopljene snovi (mg/L)</td>
<td>80</td>
<td>(a)</td>
<td>ISO/DIN 11923</td>
<td>gravimetrična-tehtmach MettlerAE 100</td>
</tr>
<tr>
<td>Usonjive snovi (mg/L)</td>
<td>0,5</td>
<td>10</td>
<td>DIN 38409-H9</td>
<td>sedimentatnjen/linhoff lij</td>
</tr>
<tr>
<td>Klor − prosti (mg/L)</td>
<td>0,2</td>
<td>0,5</td>
<td>ISO 7393/2</td>
<td>Spetkrofotometrična /Perkin Elmer Cary 1E</td>
</tr>
<tr>
<td>Celotni dušik (mg/L)</td>
<td>10</td>
<td>(a)</td>
<td>SIST EN 25663</td>
<td>Titrimetrična</td>
</tr>
<tr>
<td>Amonijev dušik (mg/L)</td>
<td>5</td>
<td>(e)</td>
<td>SIST ISO 6778</td>
<td>Spetkrofotometrična /Perkin Elmer Cary 1E</td>
</tr>
<tr>
<td>Celotni fosfor (mg/L)</td>
<td>2,0 (1,0(h))</td>
<td></td>
<td>SIST ISO 6878-1</td>
<td>Spetkrofotometrična /Perkin Elmer Cary 1E</td>
</tr>
<tr>
<td>Kemijska potreba po kisiku-KPK (mg/L O₂)</td>
<td>120</td>
<td></td>
<td>SIST ISO 6060</td>
<td>Titrimetrična</td>
</tr>
<tr>
<td>Biokemijska potreba po kisiku- BPK5 (mg/L O₂)</td>
<td>25</td>
<td></td>
<td>SIST ISO 5815</td>
<td>elektrometrična /oximotor WTO</td>
</tr>
<tr>
<td>Celotni ogljikovodik (mineralna voda) (mg/L)</td>
<td>10</td>
<td>20</td>
<td>DIN 38409-18</td>
<td>gravimetrična-tehtmach Mettler AE 100</td>
</tr>
<tr>
<td>Adsorbiraju organski halogeni-AOX (mg/L)</td>
<td>0,5</td>
<td>0,5</td>
<td>SIST ISO 9562</td>
<td>kulemetrična/ DX-200 Dorhmann</td>
</tr>
<tr>
<td>Voda anionskih in neionskih tenzidov (mg/L)</td>
<td>1,0</td>
<td>(a)</td>
<td>SIST ISO 7875-1, SIST ISO 7875-2</td>
<td>Spetkrofotometrična /Perkin Elmer Cary 1E</td>
</tr>
</tbody>
</table>

3.0 EKSPERIMENTALNI DEL

Odpadno vodo ene izmed industrijskih pralnic v Sloveniji smo čistili z membranske tehnologije: ultrafiltracijo (UF) in reverzno osmozo (RO). Vzorci odpadne vode, retentati in permeati po UF in RO so bili analizirani po metodah, ki so veljavne po uredbi z naslovom: »Uredba o emisiji snovi pri odvajanju odpadnih voda iz objektov in naprav za pranje in kemično čiščenje tkanin« [12].

3.1 Vzorci odpadne vode

3.2 Metode

V preglednici 3 so podani parametri, standardne metode, aparati za laboratorijske analize, ki jih zajema analiza odpadne vodo iz pralnic, in maksimalno dovoljene koncentracije MDK za izpust v reke.
3.3 Pilotska naprava

Vzorec odpadne vode smo obdelali na pilotski napravi (firmir MDS, Nemcija), ki je bila sestavljena iz dveh medsebojno povezanih enot za ultralizacion in reverzno osmomo. Permeat iz UF je bila vstopna raztopina v enoto za RO.

Vračna raztopina (odpadna voda) se zdaja v zbiralki 1, preklopanega permeata iz UF je bila vstopna raztopina v enoto za RO.

Vračna raztopina (odpadna voda) se zdaja v zbiralki 1, preklopanega permeata iz UF je bila vstopna raztopina v enoto za RO.

Slika 4: Enota za ultralizacion

Slika 5: Enota za reverzno osmomo
ne v spiralni modul membrane za reverzno osmozo, kjer se tokova ločujeta v permeat, ki ga odvajamo iz sistema, in retentat, ki se vrača v zbiralnik 2.

Modul membrane za reverzno osmozo je prikazan na sliki 6 in je ploskovno oblikovan sistem, ki je ovit okrog centralne zbiralne cevi, podobno kot oblika zvitega sendviča. Membrana in permeatna stran vmesne plasti sta zlepljeni na treh konečnih, tako da sestavljajo t.i. membransko pismo. Pretok gre aksialno skozi cilindrični modul vzporedno s centralno cevjo, medtem ko permeat teče radialno proti centralni cevi.

4.0 REZULTATI IN DISKUSIJA

Analizirali smo vzorce odpadne vode iz industrijske pralnice (OV), vzorca permeata (UFp) in retentata (UFr) po postopku ultrafiltracije ter vzorca permeata (ROP) in retentata (ROP) po obdelavi z reverzno osmozo glede na veljavno zakonodajo v Republiki Sloveniji (MDK – mejne dovoljene koncentracije). Določili smo naslednje parametre: temperatura, pH, neraztopljene snovi, usedljive snovi, klor, amonijev dušik, celotni fosfor, KPK, BPK₅, mineralna olja, AOX in anionski tenzidi. Rezultati analiz so podani v preglednici 4.

V vzorcu odpadne vode so bile glede na uredbo presežene vrednosti naslednjih parametrov: pH, neraztopljene snovi, usedljive snovi, ves fosfor, KPK, BPK₅, mineralna olja in anionski tenzidi. Med najpomembnejšo ekološko parametre spadajo KPK, BPK₅, AOX, tenzidi in fosfor. AOX in vodah iz industrijskih pralnic navadno ni problematičen in je nižji od dovoljenih koncentracij za iztok v odvodnik. Tudi pri naši analizi je vrednost v odpadni vodi manjša od 0,5 in znaša 0,27 mg/L Cl. KPK vrednost znaša 1150 mg/L kisika, kar je skoraj 10-krat večja od dovoljene vrednosti za iztok v reke. BPK₅ znaša 450 mg/L kisika, kar je glede na uredbo 18-krat preveč. Tudi 37 mg/L anionskih tenzidov je močno prekoračena dovoljena vrednost za

Preglednica 4: Analiza odpadne vode iz industrijske pralnice pred obdelavo z membransko tehnologijo in po njej

<table>
<thead>
<tr>
<th>Parametri</th>
<th>OV</th>
<th>UFp</th>
<th>UFr</th>
<th>ROP</th>
<th>ROP</th>
<th>MDK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatura (°C)</td>
<td>25,7</td>
<td>54,2*</td>
<td>24,8</td>
<td>29,4</td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td>pH – vrednost</td>
<td>9,2*</td>
<td>9,1</td>
<td>9,3</td>
<td>9,2</td>
<td>9,0</td>
<td>6,5–9,0</td>
</tr>
<tr>
<td>Neraztopljene snovi (mg/L)</td>
<td>86</td>
<td>14</td>
<td>202</td>
<td>10</td>
<td>31</td>
<td>80</td>
</tr>
<tr>
<td>Usedljive snovi (mL/L)</td>
<td>5,0</td>
<td><0,5</td>
<td>14,0</td>
<td><0,5</td>
<td><0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>Klor-prostil (mg/L)</td>
<td>0,1</td>
<td><0,1</td>
<td>0,1</td>
<td><0,1</td>
<td><0,1</td>
<td>0,2</td>
</tr>
<tr>
<td>Amonijev dušik (mg/L N)</td>
<td>4,8</td>
<td><0,1</td>
<td>14,3</td>
<td><0,1</td>
<td><0,1</td>
<td>5</td>
</tr>
<tr>
<td>Totalni dušik (mg/L N)</td>
<td>9,0</td>
<td>1,0</td>
<td>10,0</td>
<td><0,5</td>
<td>1,5</td>
<td>10,0</td>
</tr>
<tr>
<td>Celotni fosfor (mg/L P)</td>
<td>8,2</td>
<td>3,3</td>
<td>13,3</td>
<td>0,6</td>
<td>4,5</td>
<td>2,0</td>
</tr>
<tr>
<td>KPK (mg/L O₂)</td>
<td>1150</td>
<td>370</td>
<td>2730</td>
<td>57</td>
<td>410</td>
<td>120</td>
</tr>
<tr>
<td>BPK₅ (mg/L O₂)</td>
<td>450</td>
<td>125</td>
<td>1300</td>
<td>25</td>
<td>230</td>
<td>25</td>
</tr>
<tr>
<td>Mineralna olja (mg/L)</td>
<td>15</td>
<td>7</td>
<td>18</td>
<td>6</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>AOX (mg/L Cl)</td>
<td>0,27</td>
<td>0,12</td>
<td>0,42</td>
<td>0,10</td>
<td>0,17</td>
<td>0,5</td>
</tr>
<tr>
<td>Anionski tenzidi (mg/L)</td>
<td>37</td>
<td>21</td>
<td>65</td>
<td>1</td>
<td>30</td>
<td>3</td>
</tr>
</tbody>
</table>

* Poudarjene so presežene vrednosti glede na uredbo.
izpust v reke (MDK = 3 mg/L). Koncentracija fosforja znaša 8,2 mg/L in za več kot 4-krat presega MDK. Zaradi vseh omenjenih prekoračitev MDK, moramo odpadno vodo obvezno čistiti.

Po UF so se vrednosti vseh merjenih parametrov zmanjšale. Še vedno so večji od MDK vrednosti na slednji parametri: pH, celotni fosfor, KPK, BPK$_5$ in anionski tenzidi. Med samim postopkom UF se je zvišala temperatura zaradi segrevanja enote za UF med delovanjem. Po postopku UF se je vrednost KPK še vedno zmanjšala s 1150 mg/L O$_2$ na 370 mg/L O$_2$, vrednost BPK$_5$ 450 mg/L O$_2$ na 125 mg/L O$_2$, celotni fosfor iz 8,2 mg/L P na 3,3 mg/L P in vsebnosti tenzidov iz 37 mg/L na 21 mg/L, vendar so to še vedno prevlečne vrednosti za izpust v odvodnik. Zato je bilo treba v tem primeru vzorec čistiti še z RO.

Po obdelavi vode z RO in nevtralizaciji so vrednosti vseh merjenih parametrov ustrezale pravilniku za izpust v reke. Po postopku RO se je vrednost KPK zmanjšala s 1150 mg/L O$_2$ na 57 mg/L O$_2$, vrednost BPK$_5$ 450 mg/L O$_2$ na 25 mg/L O$_2$, fosfor 8,2 mg/L P na 0,6 mg/L P in vsebnosti tenzidov s 37 mg/L na 1 mg/L. pH vrednost se je celo za malenkost povčala (za 0,1 enote pH), vendar je treba dodati kisilno, da pade pod 9. Odpadno vodo takšne kakovosti, kot jo dobimo po RO, lahko ponovno uporabimo (rećikliramo) ali pa izpustimo naravnost v vodotok.

5.0 SKLEP

Optimalno rešitev za čiščenje odpadnih voda iz pralnic moramo poiskati za vsak primer posebej. Izbira postopka je odvisna od sestave odpadne vode in krajevih razmer posamezne pralnice. Za manjše obrtnike, pralnice, ki jih je v Sloveniji največ, zadostujejo konvencionalne metode, kot so nevtralizacija, flokulacija, sedimentacija in filtracija. Za večje industrijske pralnice, ki porabijo veliko svežje vode pri dnevnom obratovanju, pa so investicijski in obratovali stroški čiščenja odpadne vode po konvencionalnih metodah previsoki. Zato je treba poiskati primeren način obdelave odpadne vode in možnosti ponovne uporabe očiščene vode ter vzpostavitev zaprtega pretoka vode v procesu pranja. Rezerverna osmoza, nanofiltracija in/ali ultrafiltracija so dobra alternativa. S postopkom UF smo dobili takšno kakovost odpadne vode, ki jo ni bilo mogoče reciklirati, saj je imelo več parametrov prevelike vrednosti v smislu onesnaževanja okolja (KPK, BPK$_5$, tenzidi, fosfati). Zelo učinkovita tehnologija za številne industrijske aplikacije, tudi za pralnice, pa je RO, predvsem zaradi sporobnosti odstranjevanja organskih nečistoč in anorganskih soli (95–99 %) do visoke kakovosti tako v ekološkem kot higieniskem pogledu.

Zahvala

Zahvaljujemo se Evropski komisiji za finančno podporo pri izvedbi projekta EKVI-CT-2000-00049.

6.0 VIRI

Prispevek/Received: 04-2004; sprejeto/accepted: 06-2004